Computer Science, Vanderbilt University, Nashville, TN, USA.
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
Magn Reson Imaging. 2021 Feb;76:69-78. doi: 10.1016/j.mri.2020.11.005. Epub 2020 Nov 19.
Achieving inter-site / inter-scanner reproducibility of diffusion weighted magnetic resonance imaging (DW-MRI) metrics has been challenging given differences in acquisition protocols, analysis models, and hardware factors.
Magnetic field gradients impart scanner-dependent spatial variations in the applied diffusion weighting that can be corrected if the gradient nonlinearities are known. However, retrieving manufacturer nonlinearity specifications is not well supported and may introduce errors in interpretation of units or coordinate systems. We propose an empirical approach to mapping the gradient nonlinearities with sequences that are supported across the major scanner vendors.
Prospective observational study.
A spherical isotropic diffusion phantom, and a single human control volunteer.
FIELD STRENGTH/SEQUENCE: 3 T (two scanners). Stejskal-Tanner spin echo sequence with b-values of 1000, 2000 s/mm with 12, 32, and 384 diffusion gradient directions per shell.
We compare the proposed correction with the prior approach using manufacturer specifications against typical diffusion pre-processing pipelines (i.e., ignoring spatial gradient nonlinearities). In phantom data, we evaluate metrics against the ground truth. In human and phantom data, we evaluate reproducibility across scans, sessions, and hardware.
Wilcoxon rank-sum test between uncorrected and corrected data.
In phantom data, our correction method reduces variation in mean diffusivity across sessions over uncorrected data (p < 0.05). In human data, we show that this method can also reduce variation in mean diffusivity across scanners (p < 0.05).
Our method is relatively simple, fast, and can be applied retroactively. We advocate incorporating voxel-specific b-value and b-vector maps should be incorporated in DW-MRI harmonization preprocessing pipelines to improve quantitative accuracy of measured diffusion parameters.
由于采集协议、分析模型和硬件因素的差异,实现扩散加权磁共振成像(DW-MRI)指标的站点间/扫描仪间可重复性一直具有挑战性。
磁场梯度会在应用的扩散加权中引入扫描仪相关的空间变化,如果已知梯度非线性,则可以对其进行校正。然而,检索制造商的非线性规范并不可靠,并且可能会导致单位或坐标系解释错误。我们提出了一种使用跨主要扫描仪供应商都支持的序列来映射梯度非线性的经验方法。
前瞻性观察性研究。
一个各向同性球形扩散体模和一个人类对照志愿者。
磁场强度/序列:3T(两台扫描仪)。Stejskal-Tanner 自旋回波序列,b 值为 1000、2000 s/mm,每个壳层有 12、32 和 384 个扩散梯度方向。
我们将提出的校正方法与使用制造商规格的先前方法进行了比较,同时还针对典型的扩散预处理管道(即忽略空间梯度非线性)进行了比较。在体模数据中,我们根据真实值评估指标。在人体和体模数据中,我们评估了跨扫描、会话和硬件的可重复性。
未校正和校正数据之间的 Wilcoxon 秩和检验。
在体模数据中,与未校正数据相比,我们的校正方法降低了跨会话的平均扩散率的变化(p<0.05)。在人体数据中,我们表明该方法还可以降低跨扫描仪的平均扩散率变化(p<0.05)。
我们的方法相对简单、快速,可以追溯应用。我们主张在 DW-MRI 协调预处理管道中纳入体素特异性 b 值和 b 向量图,以提高测量扩散参数的定量准确性。