Suppr超能文献

多部位弥散加权 MRI 的梯度非线性校正的经验场映射。

Empirical field mapping for gradient nonlinearity correction of multi-site diffusion weighted MRI.

机构信息

Computer Science, Vanderbilt University, Nashville, TN, USA.

Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

Magn Reson Imaging. 2021 Feb;76:69-78. doi: 10.1016/j.mri.2020.11.005. Epub 2020 Nov 19.

Abstract

BACKGROUND

Achieving inter-site / inter-scanner reproducibility of diffusion weighted magnetic resonance imaging (DW-MRI) metrics has been challenging given differences in acquisition protocols, analysis models, and hardware factors.

PURPOSE

Magnetic field gradients impart scanner-dependent spatial variations in the applied diffusion weighting that can be corrected if the gradient nonlinearities are known. However, retrieving manufacturer nonlinearity specifications is not well supported and may introduce errors in interpretation of units or coordinate systems. We propose an empirical approach to mapping the gradient nonlinearities with sequences that are supported across the major scanner vendors.

STUDY TYPE

Prospective observational study.

SUBJECTS

A spherical isotropic diffusion phantom, and a single human control volunteer.

FIELD STRENGTH/SEQUENCE: 3 T (two scanners). Stejskal-Tanner spin echo sequence with b-values of 1000, 2000 s/mm with 12, 32, and 384 diffusion gradient directions per shell.

ASSESSMENT

We compare the proposed correction with the prior approach using manufacturer specifications against typical diffusion pre-processing pipelines (i.e., ignoring spatial gradient nonlinearities). In phantom data, we evaluate metrics against the ground truth. In human and phantom data, we evaluate reproducibility across scans, sessions, and hardware.

STATISTICAL TESTS

Wilcoxon rank-sum test between uncorrected and corrected data.

RESULTS

In phantom data, our correction method reduces variation in mean diffusivity across sessions over uncorrected data (p < 0.05). In human data, we show that this method can also reduce variation in mean diffusivity across scanners (p < 0.05).

CONCLUSION

Our method is relatively simple, fast, and can be applied retroactively. We advocate incorporating voxel-specific b-value and b-vector maps should be incorporated in DW-MRI harmonization preprocessing pipelines to improve quantitative accuracy of measured diffusion parameters.

摘要

背景

由于采集协议、分析模型和硬件因素的差异,实现扩散加权磁共振成像(DW-MRI)指标的站点间/扫描仪间可重复性一直具有挑战性。

目的

磁场梯度会在应用的扩散加权中引入扫描仪相关的空间变化,如果已知梯度非线性,则可以对其进行校正。然而,检索制造商的非线性规范并不可靠,并且可能会导致单位或坐标系解释错误。我们提出了一种使用跨主要扫描仪供应商都支持的序列来映射梯度非线性的经验方法。

研究类型

前瞻性观察性研究。

受试者

一个各向同性球形扩散体模和一个人类对照志愿者。

磁场强度/序列:3T(两台扫描仪)。Stejskal-Tanner 自旋回波序列,b 值为 1000、2000 s/mm,每个壳层有 12、32 和 384 个扩散梯度方向。

评估

我们将提出的校正方法与使用制造商规格的先前方法进行了比较,同时还针对典型的扩散预处理管道(即忽略空间梯度非线性)进行了比较。在体模数据中,我们根据真实值评估指标。在人体和体模数据中,我们评估了跨扫描、会话和硬件的可重复性。

统计检验

未校正和校正数据之间的 Wilcoxon 秩和检验。

结果

在体模数据中,与未校正数据相比,我们的校正方法降低了跨会话的平均扩散率的变化(p<0.05)。在人体数据中,我们表明该方法还可以降低跨扫描仪的平均扩散率变化(p<0.05)。

结论

我们的方法相对简单、快速,可以追溯应用。我们主张在 DW-MRI 协调预处理管道中纳入体素特异性 b 值和 b 向量图,以提高测量扩散参数的定量准确性。

相似文献

1
Empirical field mapping for gradient nonlinearity correction of multi-site diffusion weighted MRI.
Magn Reson Imaging. 2021 Feb;76:69-78. doi: 10.1016/j.mri.2020.11.005. Epub 2020 Nov 19.
2
Improving apparent diffusion coefficient accuracy on a compact 3T MRI scanner using gradient nonlinearity correction.
J Magn Reson Imaging. 2018 Dec;48(6):1498-1507. doi: 10.1002/jmri.26201. Epub 2018 Sep 26.
3
Efficient approximate signal reconstruction for correction of gradient nonlinearities in diffusion-weighted imaging.
Magn Reson Imaging. 2023 Oct;102:20-25. doi: 10.1016/j.mri.2023.03.014. Epub 2023 Mar 23.
4
Phantom-based field maps for gradient nonlinearity correction in diffusion imaging.
Proc SPIE Int Soc Opt Eng. 2018 Mar;10573. doi: 10.1117/12.2293786.
5
Mapping gradient nonlinearity and miscalibration using diffusion-weighted MR images of a uniform isotropic phantom.
Magn Reson Med. 2021 Dec;86(6):3259-3273. doi: 10.1002/mrm.28890. Epub 2021 Aug 4.
7
Diffusion-Weighted Imaging of the Abdomen: Correction for Gradient Nonlinearity Bias in Apparent Diffusion Coefficient.
J Magn Reson Imaging. 2023 Jul;58(1):223-231. doi: 10.1002/jmri.28529. Epub 2022 Nov 14.
9
Improvements in Between-Vendor MRI Harmonization of Renal T Mapping using Stimulated Echo Compensation.
J Magn Reson Imaging. 2024 Nov;60(5):2144-2155. doi: 10.1002/jmri.29282. Epub 2024 Feb 21.

引用本文的文献

2
Quantitative brain volumetry in neurological disorders: from disease mechanisms to software solutions.
Pol J Radiol. 2025 Jun 11;90:e299-e306. doi: 10.5114/pjr/203781. eCollection 2025.
3
Engineering clinical translation of OGSE diffusion MRI.
Magn Reson Med. 2025 Sep;94(3):913-936. doi: 10.1002/mrm.30510. Epub 2025 May 7.
6
Evaluation of Mean Shift, ComBat, and CycleGAN for Harmonizing Brain Connectivity Matrices Across Sites.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3005563. Epub 2024 Apr 2.
7
Nonlinear Gradient Field Estimation in Diffusion MRI Tensor Simulation.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12925. doi: 10.1117/12.3005364. Epub 2024 Apr 2.
10
Diffusion-Weighted MRI Monitoring of Embolic Brain Stroke for COVID-19 Patients.
Adv Biomed Res. 2023 Aug 31;12:220. doi: 10.4103/abr.abr_360_21. eCollection 2023.

本文引用的文献

1
A comprehensive approach for correcting voxel-wise b-value errors in diffusion MRI.
Magn Reson Med. 2020 Jun;83(6):2173-2184. doi: 10.1002/mrm.28078. Epub 2019 Dec 16.
2
The adverse effect of gradient nonlinearities on diffusion MRI: From voxels to group studies.
Neuroimage. 2020 Jan 15;205:116127. doi: 10.1016/j.neuroimage.2019.116127. Epub 2019 Aug 30.
3
Improving apparent diffusion coefficient accuracy on a compact 3T MRI scanner using gradient nonlinearity correction.
J Magn Reson Imaging. 2018 Dec;48(6):1498-1507. doi: 10.1002/jmri.26201. Epub 2018 Sep 26.
4
Phantom-based field maps for gradient nonlinearity correction in diffusion imaging.
Proc SPIE Int Soc Opt Eng. 2018 Mar;10573. doi: 10.1117/12.2293786.
5
Stability of Gradient Field Corrections for Quantitative Diffusion MRI.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10132. doi: 10.1117/12.2254609. Epub 2017 Mar 9.
6
NonCartesian MR image reconstruction with integrated gradient nonlinearity correction.
Med Phys. 2015 Dec;42(12):7190-201. doi: 10.1118/1.4936098.
7
An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging.
Neuroimage. 2016 Jan 15;125:1063-1078. doi: 10.1016/j.neuroimage.2015.10.019. Epub 2015 Oct 20.
8
Demonstration of nonlinearity bias in the measurement of the apparent diffusion coefficient in multicenter trials.
Magn Reson Med. 2016 Mar;75(3):1312-23. doi: 10.1002/mrm.25754. Epub 2015 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验