Suppr超能文献

介绍通过使用深度学习进行广义不确定性驱动推理的µGUIDE 进行定量成像。

Introducing µGUIDE for quantitative imaging via generalized uncertainty-driven inference using deep learning.

机构信息

Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom.

School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom.

出版信息

Elife. 2024 Nov 26;13:RP101069. doi: 10.7554/eLife.101069.

Abstract

This work proposes µGUIDE: a general Bayesian framework to estimate posterior distributions of tissue microstructure parameters from any given biophysical model or signal representation, with exemplar demonstration in diffusion-weighted magnetic resonance imaging. Harnessing a new deep learning architecture for automatic signal feature selection combined with simulation-based inference and efficient sampling of the posterior distributions, µGUIDE bypasses the high computational and time cost of conventional Bayesian approaches and does not rely on acquisition constraints to define model-specific summary statistics. The obtained posterior distributions allow to highlight degeneracies present in the model definition and quantify the uncertainty and ambiguity of the estimated parameters.

摘要

这项工作提出了 µGUIDE:一个通用的贝叶斯框架,可以从任何给定的生物物理模型或信号表示中估计组织微观结构参数的后验分布,并在扩散加权磁共振成像中进行了范例演示。利用新的深度学习架构进行自动信号特征选择,结合基于模拟的推理和后验分布的有效采样,µGUIDE 避免了传统贝叶斯方法的高计算和时间成本,并且不依赖于采集约束来定义特定于模型的摘要统计信息。所获得的后验分布可以突出模型定义中的退化,并量化估计参数的不确定性和歧义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2d/11594529/c1b705ec1d04/elife-101069-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验