Karaman Melisa Z, Yetiman Ahmet E, Zhan Jixun, Fidan Ozkan
Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye.
Department of Food Engineering Department, Faculty of Engineering, Erciyes University, Kayseri, Turkiye.
Microbiologyopen. 2025 Aug;14(4):e70051. doi: 10.1002/mbo3.70051.
Pseudomonas species are highly adaptable, thriving in diverse environments and exhibiting remarkable genetic and metabolic diversity. While some strains are pathogenic, others have significant ecological and industrial applications. Bioinformatics and biochemical analyses, including antibiotic sensitivity testing, revealed that Pseudomonas loganensis sp. nov. can tolerate NaCl concentrations up to 5% and pH ranges between 5 and 9. Antibiogram results corroborated genome data, demonstrating resistance to vancomycin, ampicillin, methicillin, oxacillin, and penicillin G. Phylogenetic analysis based on 16S rRNA, rpoB, rpoD, and gyrB genes, combined with average nucleotide identity (ANI) comparisons, confirmed P. loganensis sp. nov. as a novel species within the Pseudomonas genus. Genome analysis further revealed the presence of turnerbactin and carotenoid gene clusters. Turnerbactin, known to contribute to nitrogen fixation in plants, highlights the strain's potential as a biofertilizer. Additionally, the carotenoid gene cluster suggests potential applications in industrial carotenoid production. The discovery of a trehalose synthase (treS) gene indicates the capability for one-step conversion of maltose into trehalose, underscoring its potential utility in trehalose production.
假单胞菌属具有高度适应性,能在各种环境中茁壮成长,并展现出显著的遗传和代谢多样性。虽然有些菌株具有致病性,但其他菌株具有重要的生态和工业应用价值。生物信息学和生化分析,包括抗生素敏感性测试,表明新种洛根假单胞菌(Pseudomonas loganensis sp. nov.)能够耐受高达5%的氯化钠浓度,pH范围在5至9之间。抗菌谱结果与基因组数据相符,显示出对万古霉素、氨苄青霉素、甲氧西林、苯唑西林和青霉素G的抗性。基于16S rRNA、rpoB、rpoD和gyrB基因的系统发育分析,结合平均核苷酸同一性(ANI)比较,证实洛根假单胞菌(P. loganensis sp. nov.)是假单胞菌属内的一个新物种。基因组分析进一步揭示了特纳菌素(turnerbactin)和类胡萝卜素基因簇的存在。已知特纳菌素有助于植物固氮,这凸显了该菌株作为生物肥料的潜力。此外,类胡萝卜素基因簇表明其在工业类胡萝卜素生产中的潜在应用。海藻糖合酶(treS)基因的发现表明该菌株具有将麦芽糖一步转化为海藻糖的能力,突出了其在海藻糖生产中的潜在用途。