Suppr超能文献

利用量子点的荧光偏振特性提高光学材料中表面下损伤的检测精度

Improving the Detection Accuracy of Subsurface Damage in Optical Materials by Exploiting the Fluorescence Polarization Properties of Quantum Dots.

作者信息

Cui Yana, Liu Xuelian, Xiao Bo, Wu Yajie, Wang Chunyang

机构信息

School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China.

Xi'an Key Laboratory of Active Photoelectric Imaging Detection Technology, Xi'an Technological University, Xi'an 710021, China.

出版信息

Nanomaterials (Basel). 2025 Jul 31;15(15):1182. doi: 10.3390/nano15151182.

Abstract

Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. The large surface roughness of the lapped optical materials further increases the difficulty of the nondestructive detection of SSD. Quantum dots (QDs) show great development potential in the nondestructive detection of SSD in lapped materials. However, existing QD-based SSD detection methods ignore the polarization sensitivity of QDs to excitation light, which affects the detection accuracy of SSD. To address this problem, this paper explores the fluorescence polarization properties of QDs in the SSD of optical materials. First, the detection principle of SSD based on the fluorescence polarization of QDs is investigated. Subsequently, a fluorescence polarization detection system is developed to analyze the fluorescence polarization properties of QDs in SSD. Finally, the SSD is detected based on the studied polarization properties. The results show that the proposed method effectively improves the detection rate of SSD by 10.8% and thus provides guidance for evaluating the quality of optical material and optimizing optical material processing technologies. The research paradigm is equally applicable to biomedicine, energy, optoelectronics, and the environment, where QDs have a wide range of applications.

摘要

光学材料广泛应用于光刻机和天文望远镜等大型光学系统中。然而,光学材料在研磨和抛光过程中不可避免地会产生亚表面损伤(SSD),降低激光损伤阈值并影响光学系统的使用寿命。研磨后的光学材料表面粗糙度大,进一步增加了SSD无损检测的难度。量子点(QDs)在研磨材料的SSD无损检测中显示出巨大的发展潜力。然而,现有的基于量子点的SSD检测方法忽略了量子点对激发光的偏振敏感性,这影响了SSD的检测精度。为了解决这个问题,本文探讨了量子点在光学材料SSD中的荧光偏振特性。首先,研究了基于量子点荧光偏振的SSD检测原理。随后,开发了一种荧光偏振检测系统,以分析量子点在SSD中的荧光偏振特性。最后,基于所研究的偏振特性对SSD进行检测。结果表明,该方法有效地将SSD的检测率提高了10.8%,从而为评估光学材料质量和优化光学材料加工技术提供了指导。该研究范式同样适用于生物医学、能源、光电子学和环境等领域,其中量子点有广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cab9/12348190/a1c35eba980a/nanomaterials-15-01182-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验