Junior Nelson R C, Lourenço Maicon Pierre, Galvão Breno R L
Centro Federal de Educação Tecnologica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, Belo Horizonte, MG, 30421-169, Brazil.
Departamento e Química e Física, Centro de Ciências Exatas, Naturais e da Saúde (CCENS), Universidade Federal do Espírito Santo, Alegre, Espírito Santo, 29500-000, Brazil.
J Mol Model. 2025 Aug 13;31(9):244. doi: 10.1007/s00894-025-06457-x.
Obtaining the global minimum in the potential energy hypersurface of nanoclusters is a very difficult task, due to the large number of degrees of freedom and the vast number of local minima. However, the discovery of such minima provides the geometrical arrangement that is more likely to occur, which is a key step in computing the properties of such particles. Here we developed a genetic algorithm (GA) including a gradient adjustment in each local optimization, to obtain an efficient GA, which is particularly useful when the algorithm is coupled with electronic structure methods. The idea is first validated, and then used to predict the minima of large sodium nanoclusters up to one hundred atoms.
To validate the algorithm, we analyzed its efficiency in obtaining the global minima of Lennard-Jones clusters, whose solutions are well known and can be used as benchmark. The new GA is compared to a random search and a standard GA. For exploring the potential energy surface of sodium clusters, we employ the Density-Functional Tight-Binding (DFTB) method, with parameters that have been tuned specifically to such clusters, thus enhancing its reliability for this specific application.
由于纳米团簇势能超曲面存在大量自由度和众多局部极小值,找到其全局最小值是一项非常困难的任务。然而,发现这些极小值能提供更可能出现的几何排列,这是计算此类粒子性质的关键步骤。在此,我们开发了一种遗传算法(GA),在每次局部优化中包含梯度调整,以获得一种高效的GA,当该算法与电子结构方法结合时尤为有用。此想法首先得到验证,然后用于预测多达一百个原子的大型钠纳米团簇的极小值。
为验证该算法,我们分析了其在获取 Lennard-Jones 团簇全局最小值方面的效率,其解是已知的且可作为基准。将新的 GA 与随机搜索和标准 GA 进行比较。为探索钠团簇的势能面,我们采用密度泛函紧束缚(DFTB)方法,其参数已针对此类团簇进行了专门调整,从而提高了其在该特定应用中的可靠性。