Hasan Razia, Chen Jianfei, Mojahednia Parnian, Samaei Seyed Hesam-Aldin, Xue Jinkai
Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, Saskatchewan, Canada.
Water Environ Res. 2025 Aug;97(8):e70157. doi: 10.1002/wer.70157.
High-pressure membrane technologies can be effective in mitigating perfluoroalkyl and polyfluoroalkyl substances (PFAS) contamination in water matrices. This review explores recent developments in both commercial (e.g., NF and RO) and novel membrane technologies, focusing on their removal mechanisms, influential factors, and challenges. Key determinants, including solution pH, PFAS molecular structure, co-contaminants, and natural organic matter, are summarized for their impacts on PFAS removal efficiency. Novel membranes incorporating materials like graphene oxide, quaternary ammonium compounds, and metal-organic frameworks are highlighted for their potential to enhance PFAS removal, particularly the removal of short-chain PFAS. Despite promising developments, challenges such as fouling, energy demands, and scalability necessitate further research. This review highlights the significance of lab-scale studies and innovative designs in bridging the gap between laboratory findings and practical applications, thereby paving the way for sustainable, large-scale PFAS treatment.
高压膜技术在减轻水基质中的全氟烷基和多氟烷基物质(PFAS)污染方面可能是有效的。本综述探讨了商业膜技术(如纳滤和反渗透)以及新型膜技术的最新进展,重点关注它们的去除机制、影响因素和挑战。总结了包括溶液pH值、PFAS分子结构、共污染物和天然有机物在内的关键决定因素对PFAS去除效率的影响。重点介绍了包含氧化石墨烯、季铵化合物和金属有机框架等材料的新型膜,因其具有提高PFAS去除率的潜力,特别是对短链PFAS的去除。尽管取得了有前景的进展,但诸如污染、能源需求和可扩展性等挑战仍需要进一步研究。本综述强调了实验室规模研究和创新设计在弥合实验室研究结果与实际应用之间差距方面的重要性,从而为可持续的大规模PFAS处理铺平道路。