Maiti Amitesh, Small Ward, Olson Tammy Y, Worthington Matthew A, Mabery Shalini L, Saab Andrew P, Lewicki James P
Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
Sci Rep. 2025 Aug 13;15(1):29686. doi: 10.1038/s41598-025-15703-4.
Elastomeric foam is an essential component in many industrial and technological settings, primarily as thermal insulators and as positional/mechanical support cushions. In particular, silicone foam is utilized in harsh environments due to exceptional thermal and chemical stability. Under service conditions within certain applications such material gets exposed to a high dosage of gamma radiation, which can permanently alter the material's structural and mechanical response properties. Most studies on gamma-exposure under inert or oxidative atmosphere indicate hardening of silicone foam, which is attributed to radiation-induced enhancement in chemical cross-linking. Here we report two contrasting effects depending on whether (non-oxidative) radiation exposure is carried out with the foam under zero or finite compressive strain. While in the former case we observe radiation-hardening consistent with previous studies, in the latter case (50% porous foam under 30% uniaxial compression) we see a monotonic decrease in Young's modulus with increasing dosage, although solvent swelling experiments on the constituent rubber indicate a net increase in cross-link density independent of the state of strain. We quantitatively model all dose-dependent data using the Ogden Hyperfoam strain-energy function within the framework of Tobolsky two-network scheme and attribute the above anomaly to a combined effect of radiation-induced thickness change (compression set) and inherent nonlinearity in the foam's stress-strain response.
弹性泡沫是许多工业和技术环境中的重要组成部分,主要用作隔热材料和定位/机械支撑垫。特别是,由于具有出色的热稳定性和化学稳定性,有机硅泡沫被用于恶劣环境中。在某些应用的使用条件下,这种材料会受到高剂量的伽马辐射,这会永久性改变材料的结构和力学响应特性。大多数关于在惰性或氧化气氛下伽马辐射的研究表明,有机硅泡沫会变硬,这归因于辐射诱导的化学交联增强。在此我们报告了两种截然不同的效应,这取决于泡沫在零压缩应变或有限压缩应变下进行(非氧化)辐射暴露的情况。在前一种情况下,我们观察到与先前研究一致的辐射硬化现象;而在后一种情况下(30%单轴压缩下的50%多孔泡沫),随着剂量增加,我们看到杨氏模量单调下降,尽管对组成橡胶进行的溶剂溶胀实验表明交联密度净增加,且与应变状态无关。我们使用托博尔斯基双网络方案框架内的奥格登超泡沫应变能函数对所有剂量相关数据进行定量建模,并将上述异常归因于辐射诱导的厚度变化(压缩永久变形)和泡沫应力应变响应中固有的非线性的综合作用。