Suppr超能文献

利用大语言模型加强基于区块链的健康保险理赔中的欺诈分析与检测。

Using large language models for enhanced fraud analysis and detection in blockchain based health insurance claims.

作者信息

Islayem Ruba, Gebreab Senay, AlKhader Walaa, Musamih Ahmad, Salah Khaled, Jayaraman Raja, Khan Muhammad Khurram

机构信息

Department of Computer & Information Engineering, Khalifa University, Abu Dhabi, UAE.

Department of Management Science & Engineering, Khalifa University, Abu Dhabi, UAE.

出版信息

Sci Rep. 2025 Aug 13;15(1):29763. doi: 10.1038/s41598-025-15676-4.

Abstract

Traditional health insurance claim processing systems are plagued by inefficiencies and vulnerabilities, often resulting in significant financial losses due to fraudulent activities. Existing fraud detection methods are largely manual, time-consuming, and inadequate for handling the complexity and scale of modern fraudulent schemes. Moreover, the trust-based relationships between insurers and healthcare providers lack mechanisms to ensure data integrity and prevent manipulation. While several blockchain-based systems have been proposed to improve transparency and tamper resistance, they typically focus on structured data and predefined fraud types, offering limited adaptability and analytical insight. This paper proposes a novel solution leveraging blockchain technology and Large Language Models (LLMs) to transform fraud detection. The system uses Ethereum smart contracts (SCs) to securely store medical records and claim details on a decentralized, tamper-proof ledger that ensures data integrity, traceability, and accountability. This immutable data is accessed by an LLM via a Retrieval-Augmented Generation (RAG) system, which enables intelligent retrieval and analysis of relevant clinical information to detect fraud patterns and inconsistencies. To support complex scenarios involving free-text documents, unstructured clinical data, such as lab reports, are stored using decentralized off-chain storage and retrieved during LLM analysis. In addition, an LLM-powered chatbot also allows insurance providers to interact with the system in natural language for claim inquiries, explanations, and summaries. The architecture, sequence diagrams, and implementation algorithms outline the development process, while testing scenarios demonstrate the system's ability to detect fraud such as inflated costs, unnecessary treatments, and unrendered services. Evaluation using both synthetic and public clinical datasets showed strong performance, with the LLM achieving up to 99% fraud detection accuracy. Cost, security, and scalability analyses confirm the system's practicality and resilience, with the complete detection process executing in just 13 seconds. By overcoming the limitations of traditional systems, this framework offers a scalable and adaptable approach for healthcare and other domains. The SCs and source code are publicly available on GitHub.

摘要

传统的健康保险理赔处理系统存在效率低下和漏洞问题,常常因欺诈活动导致重大财务损失。现有的欺诈检测方法大多是人工操作,耗时且不足以应对现代欺诈计划的复杂性和规模。此外,保险公司与医疗服务提供商之间基于信任的关系缺乏确保数据完整性和防止数据操纵的机制。虽然已经提出了几种基于区块链的系统来提高透明度和抗篡改能力,但它们通常侧重于结构化数据和预定义的欺诈类型,适应性和分析洞察力有限。本文提出了一种利用区块链技术和大语言模型(LLMs)来变革欺诈检测的新颖解决方案。该系统使用以太坊智能合约(SCs)将医疗记录和理赔细节安全地存储在去中心化的、防篡改的账本上,确保数据的完整性、可追溯性和问责制。这个不可变数据由一个大语言模型通过检索增强生成(RAG)系统访问,该系统能够智能检索和分析相关临床信息,以检测欺诈模式和不一致之处。为了支持涉及自由文本文件的复杂场景,非结构化临床数据(如实验室报告)使用去中心化的链下存储进行存储,并在大语言模型分析期间进行检索。此外,一个由大语言模型驱动的聊天机器人还允许保险提供商以自然语言与系统进行交互,以进行理赔查询、解释和总结。架构图、序列图和实现算法概述了开发过程,而测试场景展示了该系统检测诸如虚增费用、不必要治疗和未提供服务等欺诈行为的能力。使用合成临床数据集和公共临床数据集进行的评估显示出强大的性能,大语言模型实现了高达99% 的欺诈检测准确率。成本、安全性和可扩展性分析证实了该系统的实用性和弹性,完整的检测过程仅需13秒即可执行。通过克服传统系统的局限性,这个框架为医疗保健和其他领域提供了一种可扩展且适应性强的方法。智能合约和源代码在GitHub上公开可用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfb0/12350640/ba9be89ea67a/41598_2025_15676_Fig1_HTML.jpg

相似文献

4
Blockchain-enhanced electoral integrity: a robust model for secure digital voting systems in Oman.
F1000Res. 2025 Apr 28;14:223. doi: 10.12688/f1000research.160087.2. eCollection 2025.
10
Fraud detection in healthcare claims using machine learning: A systematic review.
Artif Intell Med. 2025 Feb;160:103061. doi: 10.1016/j.artmed.2024.103061. Epub 2024 Dec 28.

本文引用的文献

2
Healthcare insurance fraud detection using data mining.
BMC Med Inform Decis Mak. 2024 Apr 26;24(1):112. doi: 10.1186/s12911-024-02512-4.
4
Current Procedural Terminology: History, Structure, and Relationship to Valuation for the Neuroradiologist.
AJNR Am J Neuroradiol. 2016 Nov;37(11):1972-1976. doi: 10.3174/ajnr.A4863. Epub 2016 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验