Suppr超能文献

诺如病毒疫情传播的数值解:对公共卫生控制的影响。

Numerical solutions for norovirus epidemic spread: implications for public health control.

作者信息

Saleem Suhail, Raza Ali, Lampart Marek, Rafiq Muhammad, Ahmed Nauman, Arif Muhammad Shoaib

机构信息

Department of Mathematics, Air University, PAF Complex, E-9, Islamabad, 44000, Pakistan.

Center for Research and Development in Mathematics and Application (CIDMA), Department of Mathematics, University of Aveiro, 3810-193, Aveiro, Portugal.

出版信息

Sci Rep. 2025 Aug 13;15(1):29657. doi: 10.1038/s41598-025-14688-4.

Abstract

Norovirus is a highly contagious virus and the leading cause of acute gastroenteritis worldwide. The World Health Organization (WHO) estimates that approximately 685 million cases of norovirus infection occur each year, with around 200 million affecting children under the age of five. The impact of this virus is substantial, contributing to roughly 200,000 deaths annually-about 50,000 of which are among young children-mostly in low-income countries. In addition to the human toll, norovirus imposes a significant economic burden, with global costs reaching approximately $60 billion each year due to healthcare expenses and lost productivity. In this paper, we present a fractional-order mathematical analysis of the norovirus epidemic model, focusing on its transmission dynamics, incorporating memory effects. The total population, denoted as N(t), is categorized into four compartments: susceptible, exposed, infected, and recovered. We analytically derive the equilibrium points and the basic reproduction number of the model. Furthermore, we discuss the properties of positivity, boundedness, uniqueness, and existence to ensure the model's validity. The non-linear model is linearized around its equilibrium points, and local stability is analyzed using the eigenvalues of the Jacobian matrix. In addition, global stability is examined using the Lyapunov function and LaSalle's invariance principle. To validate the theoretical findings, a numerical scheme based on the GL-Non-Standard Finite Difference (NSFD) method is developed, which serves to verify the theoretical analysis of the norovirus epidemic model.

摘要

诺如病毒是一种极具传染性的病毒,是全球急性肠胃炎的主要病因。世界卫生组织(WHO)估计,每年约有6.85亿例诺如病毒感染病例,其中约2亿例影响五岁以下儿童。这种病毒的影响巨大,每年导致约20万人死亡,其中约5万人是幼儿,主要发生在低收入国家。除了造成人员伤亡外,诺如病毒还带来了巨大的经济负担,由于医疗费用和生产力损失,全球每年的成本约达600亿美元。在本文中,我们对诺如病毒流行模型进行了分数阶数学分析,重点关注其传播动态,并纳入记忆效应。总人口用N(t)表示,分为四个部分:易感者、潜伏者、感染者和康复者。我们通过分析得出了模型的平衡点和基本再生数。此外,我们还讨论了正性、有界性、唯一性和存在性等性质,以确保模型的有效性。对非线性模型在其平衡点附近进行线性化,并使用雅可比矩阵的特征值分析局部稳定性。此外,使用李雅普诺夫函数和拉萨尔不变性原理研究全局稳定性。为了验证理论结果,开发了一种基于GL-非标准有限差分(NSFD)方法的数值方案,用于验证诺如病毒流行模型的理论分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/933d/12350857/cfa61d771a79/41598_2025_14688_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验