Ahmad W, Nazir M A, Rafiq M, Butt A I K, Ahmad N, Hussain M
Department of Mathematics, Government College University, Lahore, 54000, Pakistan.
Department of Mathematics, Namal University, 30KM Talagang Road, Mianwali, 42250, Pakistan.
Comput Biol Med. 2025 Oct;197(Pt A):110954. doi: 10.1016/j.compbiomed.2025.110954. Epub 2025 Aug 29.
Rubella outbreaks have posed serious health, social, and economic challenges worldwide, straining public health systems and economies. Effective understanding and control of the disease remain crucial to prevent its spread, reduce its impact, and support global eradication efforts. This study presents a nonlinear Rubella model using the Atangana-Baleanu derivative in Caputo framework (ABC) to account for memory and hereditary effects in disease dynamics. We explore various transmission modes, identify key risk factors, and examine the long-term effects associated with the disease through this fractional-order approach. The model extends a classical SEITR framework and introduces a fractional approach to analyze key mathematical properties including existence, uniqueness, positivity, and boundedness of solutions. The basic reproduction number is derived, and both Rubella-free and endemic equilibria were determined and their local and global stability was established using Lyapunov theory. The model underwent a bifurcation analysis to understand critical thresholds for disease persistence. Sensitivity analysis identified key parameters that significantly influence disease transmission, guiding effective intervention strategies. Adjusting time-invariant treatment and vaccination efforts is shown to accelerate epidemic control. Further, a fractional optimal control problem is formulated and solved using Pontryagin's Maximum Principle and the ABC framework. Results showed that time-dependent vaccination and treatment significantly reduce infections and associated costs more effectively than constant controls. Numerical simulations are performed using the Toufik-Atangana method, showing that increased treatment and vaccination coverage significantly reduce infection rates and overall cost. The employed numerical method supports our analytical results, preserving positivity, boundedness and stability of obtained solutions, which emphasize the importance of the ABC derivative. The model outcomes provide valuable insights into how fractional-order models and optimal control strategies can enhance epidemic management, especially in designing cost-effective interventions for Rubella. To the best of our knowledge, this is the first study to apply the ABC fractional derivative to the considered Rubella model with optimal control. The novelty lies in integrating ABC fractional calculus with both constant and time-dependent optimal controls, supported by modern analytical and numerical techniques for a more realistic and cost-effective approach to disease management.
风疹疫情在全球范围内带来了严重的健康、社会和经济挑战,给公共卫生系统和经济造成了压力。有效了解和控制该疾病对于防止其传播、减轻其影响以及支持全球根除努力仍然至关重要。本研究提出了一个在Caputo框架下使用阿坦加纳 - 巴莱亚努导数(ABC)的非线性风疹模型,以考虑疾病动态中的记忆和遗传效应。我们通过这种分数阶方法探索各种传播模式,识别关键风险因素,并研究与该疾病相关的长期影响。该模型扩展了经典的SEITR框架,并引入了分数阶方法来分析关键的数学性质,包括解的存在性、唯一性、正性和有界性。推导了基本再生数,确定了无风疹和地方病平衡点,并使用李雅普诺夫理论建立了它们的局部和全局稳定性。对该模型进行了分岔分析,以了解疾病持续存在的临界阈值。敏感性分析确定了对疾病传播有显著影响的关键参数,为有效的干预策略提供了指导。结果表明,调整时不变的治疗和疫苗接种力度可加速疫情控制。此外,使用庞特里亚金极大值原理和ABC框架制定并解决了一个分数阶最优控制问题。结果表明,与固定控制相比,随时间变化的疫苗接种和治疗能更有效地显著降低感染率和相关成本。使用图菲克 - 阿坦加纳方法进行了数值模拟,结果表明增加治疗和疫苗接种覆盖率可显著降低感染率和总体成本。所采用的数值方法支持了我们的分析结果,保持了所得解的正性、有界性和稳定性,这强调了ABC导数的重要性。该模型结果为分数阶模型和最优控制策略如何加强疫情管理提供了有价值的见解,特别是在设计具有成本效益的风疹干预措施方面。据我们所知,这是第一项将ABC分数阶导数应用于具有最优控制的所考虑风疹模型的研究。其新颖之处在于将ABC分数阶微积分与固定和随时间变化的最优控制相结合,并得到现代分析和数值技术的支持,从而为疾病管理提供一种更现实且具有成本效益的方法。