文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

以甘蔗渣衍生的纤维素纳米晶体增强的环保三元乙丙橡胶纳米复合材料。

Eco-friendly EPDM nanocomposites reinforced with sugarcane bagasse-derived cellulose nanocrystals.

作者信息

Tohamy Hebat-Allah S, Koriem Adel, El-Nashar Doaa E

机构信息

Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str, P.O. 12622, Dokki Giza, Egypt.

Polymers and Pigments Department, National Research Centre, 33 El Bohouth Str, P.O. 12622, Cairo, Dokki Giza, Egypt.

出版信息

BMC Chem. 2025 Aug 13;19(1):239. doi: 10.1186/s13065-025-01601-3.


DOI:10.1186/s13065-025-01601-3
PMID:40804748
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12351947/
Abstract

The goal of this work is to prevent environmental pollution resulted from burned agriculture waste, offering a pathway with the potential to reduce CO₂ emissions compared to direct combustion of sugarcane bagasse. Cellulose nanocrystals (CNC) are produced by acid hydrolyzing cellulose obtained from sugarcane bagasse. It serves as a reinforcing filler within the ethylene propylene diene monomer (EPDM) rubber matrix. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) were employed to examine morphology, thermal properties and crystallinity respectively. The empirical crystallinity (LOI) and average hydrogen bond strength (MHBS) were determined using Fourier transform infrared spectroscopy (FTIR) for cellulose and cellulose nanocrystals (CNC). It was discovered that (CNC) is lower than CNC for both LOI and MHBS, demonstrating the breakdown of cellulose into CNCs. Two roll-mill was used to prepare EPDM/cellulose nanocrystals (CNC) nanocomposites. Two to ten parts of CNC per hundred rubbers were used. Curing characteristics, mechanical testing, thermogravimetric analysis (TGA), equilibrium swelling, and scanning electron microscopy (SEM) were used to assess the EPDM/(CNC) nanocomposites. SEM pictures, show that some clumping, particularly at higher percentages of (CNC), and a uniform dispersion of (CNC) at 8 phr. It has been demonstrated that when the loading of CNCs increases, the cure time lowers and cure rate index increased, simulating a shorter industrial production cycle. In comparison to EPDM at 8 phr (CNC) loading, Additionally, the results showed an increase in tensile strength from 2.68 to 10.82 MPa i.e. increased by 403.7% and increasing in elongation at break by 233.47%. Also the hardness increased to about 83.33%. The modulus at 50, 100, and 200%, as well as a decrease in equilibrium swelling that confirm the mechanical testing. So, the prepared (CNC) may be enhanced the mechanical properties of the evaluated nanocomposites comparing to EPDM vulcanizates free.

摘要

这项工作的目标是防止农业废弃物焚烧造成的环境污染,提供一条与甘蔗渣直接燃烧相比有潜力减少二氧化碳排放的途径。纤维素纳米晶体(CNC)是通过酸水解从甘蔗渣中获得的纤维素而制备的。它在乙丙二烯单体(EPDM)橡胶基体中作为增强填料。分别采用透射电子显微镜(TEM)、热重分析(TGA)和X射线衍射(XRD)来检测形态、热性能和结晶度。使用傅里叶变换红外光谱(FTIR)测定纤维素和纤维素纳米晶体(CNC)的经验结晶度(LOI)和平均氢键强度(MHBS)。结果发现,对于LOI和MHBS而言,(CNC)均低于CNC,这表明纤维素分解成了CNC。使用双辊炼胶机制备EPDM/纤维素纳米晶体(CNC)纳米复合材料。每百份橡胶中使用2至10份CNC。采用硫化特性、力学测试、热重分析(TGA)、平衡溶胀和扫描电子显微镜(SEM)来评估EPDM/(CNC)纳米复合材料。SEM图片显示,存在一些团聚现象,特别是在(CNC)含量较高时,而在8份/百份橡胶(phr)时(CNC)分散均匀。已经证明,当CNC的用量增加时,硫化时间缩短,硫化速率指数增加,这意味着工业生产周期缩短。与8 phr(CNC)用量的EPDM相比,此外,结果显示拉伸强度从2.68 MPa增加到10.82 MPa,即增加了403.7%,断裂伸长率增加了233.47%。硬度也增加到约83.33%。50%、100%和200%伸长率下的模量以及平衡溶胀的降低证实了力学测试结果。因此,与未添加的EPDM硫化胶相比,所制备 的(CNC)可以提高所评估纳米复合材料的力学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/c585d75f3e40/13065_2025_1601_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/9c5b9adc7f74/13065_2025_1601_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/60ee092c80ba/13065_2025_1601_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/9118115be19d/13065_2025_1601_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/e3be42f3f35e/13065_2025_1601_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/abd10476a393/13065_2025_1601_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/f447805aa1e3/13065_2025_1601_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/fc81b3140720/13065_2025_1601_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/c585d75f3e40/13065_2025_1601_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/9c5b9adc7f74/13065_2025_1601_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/60ee092c80ba/13065_2025_1601_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/9118115be19d/13065_2025_1601_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/e3be42f3f35e/13065_2025_1601_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/abd10476a393/13065_2025_1601_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/f447805aa1e3/13065_2025_1601_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/fc81b3140720/13065_2025_1601_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a75b/12351947/c585d75f3e40/13065_2025_1601_Fig8_HTML.jpg

相似文献

[1]
Eco-friendly EPDM nanocomposites reinforced with sugarcane bagasse-derived cellulose nanocrystals.

BMC Chem. 2025-8-13

[2]
Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse.

Int J Biol Macromol. 2017-3

[3]
Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.

Carbohydr Polym. 2015-4-30

[4]
An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst.

Bioresour Technol. 2019-7-4

[5]
Comparative evaluation of cellulose nanocrystals from bagasse and coir agro-wastes for reinforcing PVA-based composites.

Environ Dev Sustain. 2022

[6]
Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites.

Carbohydr Polym. 2016-6-17

[7]
Extraction and Surface Functionalization of Cellulose Nanocrystals from Sugarcane Bagasse.

Molecules. 2023-7-16

[8]
Preparation of photoluminescent and anticorrosive epoxy paints immobilized with nanoscale graphene from sugarcane bagasse agricultural waste.

Environ Sci Pollut Res Int. 2022-8

[9]
Recent developments in sugarcane bagasse fibre-based adsorbent and their potential industrial applications: A review.

Int J Biol Macromol. 2024-10

[10]
Characteristics of surface modified sugarcane bagasse cellulose: application of esterification and oxidation reactions.

Sci Rep. 2024-10-15

本文引用的文献

[1]
Fullerene-Functionalized Cellulosic Hydrogel Biosensor with Bacterial Turn-on Fluorescence Response Derived from Carboxymethyl Cellulose for Intelligent Food Packaging with DFT Calculations and Molecular Docking.

Gels. 2025-4-28

[2]
Microwaved schiff base dialdehyde cellulose-chitosan hydrogels for sustained drug release with DFT calculations.

BMC Chem. 2025-5-2

[3]
Hepatoprotective activity of bio-fabricated carbon quantum dots-decorated zinc oxide against carbon tetrachloride-induced liver injury in male rats.

BMC Pharmacol Toxicol. 2025-5-1

[4]
Novel intelligent naked-eye food packaging pH-sensitive and fluorescent sulfur, nitrogen-carbon dots biosensors for tomato spoilage detection including DFT and molecular docking characterization.

Int J Biol Macromol. 2025-5

[5]
Novel colored hydroxypropyl methyl cellulose/ magnetite carbon dots films for beef packaging with DFT calculations and molecular docking study.

Sci Rep. 2025-3-25

[6]
A Comprehensive Review on Cellulose Nanofibers, Nanomaterials, and Composites: Manufacturing, Properties, and Applications.

Nanomaterials (Basel). 2025-2-25

[7]
Advanced disease therapeutics using engineered living drug delivery systems.

Nanoscale. 2025-3-28

[8]
Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging.

Foods. 2024-12-11

[9]
Cellulosic schiff base hydrogel biosensor for bacterial detection with pH/thermo-responsitivity: DFT calculations and molecular docking.

Int J Biol Macromol. 2024-12

[10]
Current nanocomposite advances for biomedical and environmental application diversity.

Med Res Rev. 2025-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索