Zhou Yu, Zhou Jixiang, Yu Xueke, Pei Wei, Zhou Si, Zhao Jijun
College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
J Phys Chem Lett. 2025 Aug 21;16(33):8613-8620. doi: 10.1021/acs.jpclett.5c01928. Epub 2025 Aug 13.
Spin-orbit coupling (SOC) plays a fundamental role in shaping the electronic structures, optical properties, and excited-state dynamics of nanoscale systems. However, in conventional quantum dots (e.g., CdSe and PbS), the observation and control of SOC effects are hindered by complex energy level structures and high densities of electronic states, which obscure the contributions of SOC and limit their tunability. In contrast, atomically precise superatomic metal nanoclusters (NCs), such as Au and Au, offer a unique platform to isolate and systematically study SOC-driven phenomena, owing to their well-defined atomic configurations and discrete energy level distributions. In this work, we employed time-dependent density functional theory (TD-DFT) simulations to investigate the impact of SOC in ligand-protected Au NCs. As a result, SOC lifts the degeneracy of the 1P superatomic orbitals, with the splitting patterns being strongly dependent on ligand identity. This ligand-specific SOC effect reshapes the optical absorption and magnetic circular dichroism (MCD) spectra, altering peak positions, intensities, and selection rules. Moreover, SOC significantly affects electronic transition channels, thereby influencing the relationship between electron-vibration interactions and carrier dynamics. These results provide a theoretical basis for designing metal nanoclusters with superior optoelectronic properties.
自旋轨道耦合(SOC)在塑造纳米级系统的电子结构、光学性质和激发态动力学方面起着基础性作用。然而,在传统量子点(如CdSe和PbS)中,SOC效应的观测和控制受到复杂能级结构和高电子态密度的阻碍,这使得SOC的贡献变得模糊,并限制了它们的可调谐性。相比之下,原子精确的超原子金属纳米团簇(NCs),如Au和Au,由于其明确的原子构型和离散的能级分布,为隔离和系统研究SOC驱动的现象提供了一个独特的平台。在这项工作中,我们采用含时密度泛函理论(TD-DFT)模拟来研究SOC在配体保护的Au NCs中的影响。结果表明,SOC消除了1P超原子轨道的简并性,其分裂模式强烈依赖于配体特性。这种配体特异性的SOC效应重塑了光吸收和磁圆二色性(MCD)光谱,改变了峰位、强度和选择规则。此外,SOC显著影响电子跃迁通道,从而影响电子-振动相互作用与载流子动力学之间的关系。这些结果为设计具有优异光电性能的金属纳米团簇提供了理论基础。