Shaffer Sarah K, Medjaouri Omar, Swenson Brian, Eliason Travis, Nicolella Daniel P
Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78238, USA.
Animals (Basel). 2025 Aug 5;15(15):2281. doi: 10.3390/ani15152281.
The ability to quantify equine kinematics is essential for clinical evaluation, research, and performance feedback. However, current methods are challenging to implement. This study presents a motion capture methodology for horses, where three-dimensional, full-body kinematics are calculated without instrumentation on the animal, offering a more scalable and labor-efficient approach when compared with traditional techniques. Kinematic trajectories are calculated from multi-camera video data. First, a neural network identifies skeletal landmarks (markers) in each camera view and the 3D location of each marker is triangulated. An equine biomechanics model is scaled to match the subject's shape, using segment lengths defined by markers. Finally, inverse kinematics (IK) produces full kinematic trajectories. We test this methodology on a horse at three gaits. Multiple neural networks (NNs), trained on different equine datasets, were evaluated. All networks predicted over 78% of the markers within 25% of the length of the radius bone on test data. Root-mean-square-error (RMSE) between joint angles predicted via IK using ground truth marker-based motion capture data and network-predicted data was less than 10 degrees for 25 to 32 of 35 degrees of freedom, depending on the gait and data used for network training. NNs trained over a larger variety of data improved joint angle RMSE and curve similarity. Marker prediction error, the average distance between ground truth and predicted marker locations, and IK marker error, the distance between experimental and model markers, were used to assess network, scaling, and registration errors. The results demonstrate the potential of markerless motion capture for full-body equine kinematic analysis.
量化马的运动学对于临床评估、研究和性能反馈至关重要。然而,目前的方法实施起来具有挑战性。本研究提出了一种用于马的运动捕捉方法,该方法无需在动物身上安装仪器即可计算三维全身运动学,与传统技术相比,提供了一种更具可扩展性且省力的方法。运动轨迹是根据多摄像机视频数据计算得出的。首先,神经网络识别每个摄像机视图中的骨骼标志点(标记),并对每个标记的三维位置进行三角测量。使用由标记定义的节段长度,将马的生物力学模型进行缩放以匹配受试者的形状。最后,逆运动学(IK)生成完整的运动轨迹。我们在一匹马的三种步态上测试了这种方法。对在不同马数据集上训练的多个神经网络(NNs)进行了评估。在测试数据上,所有网络预测的标记超过半径骨长度的25%范围内的标记超过78%。根据步态和用于网络训练的数据,使用基于地面真实标记的运动捕捉数据通过IK预测的关节角度与网络预测数据之间的均方根误差(RMSE)对于35个自由度中的25至32个小于10度。在更多种类的数据上训练的神经网络提高了关节角度RMSE和曲线相似度。标记预测误差(地面真实标记位置与预测标记位置之间的平均距离)和IK标记误差(实验标记与模型标记之间的距离)用于评估网络、缩放和配准误差。结果证明了无标记运动捕捉在马全身运动学分析中的潜力。