Suppr超能文献

马的四足运动的肌肉驱动预测物理模拟。

Muscle-Driven Predictive Physics Simulations of Quadrupedal Locomotion in the Horse.

机构信息

Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building A, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands.

Vertebrate evolution, development and ecology, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands.

出版信息

Integr Comp Biol. 2024 Sep 27;64(3):694-714. doi: 10.1093/icb/icae095.

Abstract

Musculoskeletal simulations can provide insights into the underlying mechanisms that govern animal locomotion. In this study, we describe the development of a new musculoskeletal model of the horse, and to our knowledge present the first fully muscle-driven, predictive simulations of equine locomotion. Our goal was to simulate a model that captures only the gross musculoskeletal structure of a horse, without specialized morphological features. We mostly present simulations acquired using feedforward control, without state feedback ("top-down control"). Without using kinematics or motion capture data as an input, we have simulated a variety of gaits that are commonly used by horses (walk, pace, trot, tölt, and collected gallop). We also found a selection of gaits that are not normally seen in horses (half bound, extended gallop, ambling). Due to the clinical relevance of the trot, we performed a tracking simulation that included empirical joint angle deviations in the cost function. To further demonstrate the flexibility of our model, we also present a simulation acquired using spinal feedback control, where muscle control signals are wholly determined by gait kinematics. Despite simplifications to the musculature, simulated footfalls and ground reaction forces followed empirical patterns. In the tracking simulation, kinematics improved with respect to the fully predictive simulations, and muscle activations showed a reasonable correspondence to electromyographic signals, although we did not predict any anticipatory firing of muscles. When sequentially increasing the target speed, our simulations spontaneously predicted walk-to-run transitions at the empirically determined speed. However, predicted stride lengths were too short over nearly the entire speed range unless explicitly prescribed in the controller, and we also did not recover spontaneous transitions to asymmetric gaits such as galloping. Taken together, our model performed adequately when simulating individual gaits, but our simulation workflow was not able to capture all aspects of gait selection. We point out certain aspects of our workflow that may have caused this, including anatomical simplifications and the use of massless Hill-type actuators. Our model is an extensible, generalized horse model, with considerable scope for adding anatomical complexity. This project is intended as a starting point for continual development of the model and code that we make available in extensible open-source formats.

摘要

肌肉骨骼模拟可以深入了解控制动物运动的潜在机制。在这项研究中,我们描述了一种新的马的肌肉骨骼模型的开发,并据我们所知,首次对马的运动进行了完全肌肉驱动的、可预测的模拟。我们的目标是模拟一个仅捕捉马的大体肌肉骨骼结构的模型,而不具有专门的形态特征。我们主要呈现使用前馈控制获得的模拟,而没有使用状态反馈(“自上而下的控制”)。在不使用运动学或运动捕捉数据作为输入的情况下,我们模拟了马常用的各种步态(步行、踱步、小跑、快步和收集的疾驰)。我们还发现了一些在马中不常见的步态(半跳跃、伸展疾驰、漫步)。由于小跑的临床相关性,我们在成本函数中进行了关节角度偏差的跟踪模拟。为了进一步展示我们模型的灵活性,我们还呈现了一个使用脊柱反馈控制获得的模拟,其中肌肉控制信号完全由步态运动学决定。尽管肌肉骨骼结构被简化,但模拟的足印和地面反作用力仍遵循经验模式。在跟踪模拟中,运动学相对于完全可预测的模拟得到了改善,肌肉激活与肌电图信号具有合理的对应关系,尽管我们没有预测任何肌肉的预触发。当逐步增加目标速度时,我们的模拟会自发地在经验确定的速度下预测从步行到奔跑的转变。然而,除非在控制器中明确规定,否则预测的步幅在整个速度范围内都太短,并且我们也没有恢复到不对称步态(如疾驰)的自发转变。总的来说,我们的模型在模拟单个步态时表现良好,但我们的模拟工作流程无法捕捉步态选择的所有方面。我们指出了工作流程中的某些方面可能导致这种情况,包括解剖学简化和使用无质量希尔型执行器。我们的模型是一个可扩展的、通用的马模型,具有添加解剖复杂性的巨大潜力。该项目旨在作为我们以可扩展的开源格式提供的模型和代码的持续开发的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a50/11428545/46b9c0ab2ae9/icae095fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验