Suppr超能文献

超高温陶瓷复合材料推进器在瞬态绿色推进运行下的概率损伤建模与热冲击风险评估

Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation.

作者信息

Jindal Prakhar, Doozandeh Tamim, Botchu Jyoti

机构信息

Space System Engineering Section, Space Engineering, Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1, 2629 HS Delft, The Netherlands.

出版信息

Materials (Basel). 2025 Jul 31;18(15):3600. doi: 10.3390/ma18153600.

Abstract

This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0-10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines.

摘要

本研究针对一种为短时间绿色双组元推进系统设计的可重复使用陶瓷基复合材料推进器,提出了基于模拟的损伤建模和疲劳风险评估方法。该推进器由纤维增强超高温陶瓷基复合材料制成,这种复合材料由二硼化锆、碳化硅和碳纤维组成。在经过验证的推进器几何模型上进行了时间分辨热模拟和结构模拟,以表征早期热冲击、应力积累和潜在退化途径的严重程度。与传统的依赖经验疲劳常数或基于巴黎定律的裂纹扩展模型的疲劳研究不同,这项工作引入了一种基于模拟得出的应力裕度包络方法,该方法考虑了与温度相关的材料强度±20%的变化,提供了一个基于物理原理但保守的风险估计。据此,导出了一个归一化风险指数,以评估在0至10秒的点火窗口内关键区域损伤起始的可能性。结果表明,收敛喉部区域的峰值热梯度率约为380K/s,归一化热冲击指数超过43。该区域的应力裕度在2.3秒时崩溃,而法兰曲率处的裕度损失在8秒左右出现。这些结果被映射到绿色、黄色和红色风险带中,以对操作安全区域进行分类。所有结果均假设无主动冷却,代表保守的操作极限。如果实施再生冷却或烧蚀冷却,这些裕度将显著提高。这里建立的框架为评估陶瓷推进喷嘴的寿命安全性提供了一种透明、可重复的方法,并作为绿色空间发动机中抗疲劳部件设计的基础工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55fc/12348662/f48e2ada5c90/materials-18-03600-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验