Wen Zhe, Niklas Karl J, Yang Yunfeng, Gu Wen, Li Zhongqin, Shi Peijian
College of Landscape Architecture, Nanjing Forestry University, # 159 Longpan Road, Nanjing 210037, China.
School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
Plants (Basel). 2025 Aug 7;14(15):2446. doi: 10.3390/plants14152446.
Although the allocation of biomass among floral organs reflects critical trade-offs in plant reproductive strategies, the scaling relationships governing biomass allocations remain poorly resolved, particularly in flowers. Here, we report the fresh mass scaling allocation patterns among four floral organs (i.e., sepals, petals, stamens, and carpels), and the two subtending structural components (i.e., the pedicel and receptacle) of 497 flowers of the hypogynous var. (miniature rose) using reduced major axis protocols. The two-parameter Weibull probability density function was also applied to characterize the distributions of floral organ mass, and revealed skewed tendencies in all six measured traits. The results show that the numerical values of the scaling exponents (α) for all pairwise power-law relationships significantly exceeded unity (α > 1), indicating disproportionate investments in larger floral structures with increasing overall flower size. Specifically, the scaling exponent of corolla fresh mass vs. calyx fresh mass was α = 1.131 (95% confidence interval [CI]: 1.086, 1.175), indicating that petal investment outpaces sepal investment as flower size increases. Reproductive organs also exhibited significant disproportionate investments (i.e., allometry): the collective carpel (gynoecium) fresh mass scaled allometrically with respect to the collective stamen (androecium) mass (α = 1.062, CI: 1.028, 1.098). Subtending axial structures (pedicel and receptacle) also had hyperallometric patterns, with pedicel mass scaling at α = 1.167 (CI: 1.106, 1.235) with respect to receptacle mass. Likewise, the combined fresh mass of all four foliar homologues (sepals, petals, androecium, and gynoecium) scaled disproportionately with respect to the biomass of the two subtending axial structures (α = 1.169, CI: 1.126, 1.214), indicating a prioritized resource allocation to reproductive and display organs. These findings are in accord with hypotheses positing that floral display traits, such as corolla size, primarily enhance pollen export by attracting pollinators, while maintaining fruit setting success through coordinated investment in gynoecium development. The consistent hyperallometry across all organ pairwise comparisons underscores the role of developmental integration in shaping floral architecture in Rosaceae, as predicted by scaling theory. By integrating morphometric and scaling analyses, this study proposes a tractable methodology for investigating floral resource allocation in monomorphic-flowering species and provides empirical evidence consistent with the adaptive patterns of floral traits within this ecologically and horticulturally significant lineage.
尽管花器官间的生物量分配反映了植物繁殖策略中的关键权衡,但控制生物量分配的比例关系仍未得到很好的解决,尤其是在花朵中。在这里,我们使用主轴缩减协议报告了497朵下位花变种(微型玫瑰)的四个花器官(即萼片、花瓣、雄蕊和心皮)以及两个支撑结构成分(即花梗和花托)之间的鲜质量比例分配模式。还应用了双参数威布尔概率密度函数来表征花器官质量的分布,并揭示了所有六个测量性状的偏态趋势。结果表明,所有成对幂律关系的比例指数(α)的数值均显著超过1(α>1),表明随着花朵整体大小的增加,对较大花结构的投资不成比例。具体而言,花冠鲜质量与花萼鲜质量的比例指数为α = 1.131(95%置信区间[CI]:1.086,1.175),表明随着花大小的增加,花瓣投资超过萼片投资。生殖器官也表现出显著的不成比例投资(即异速生长):心皮(雌蕊群)的集体鲜质量相对于雄蕊(雄蕊群)的质量呈异速生长(α = 1.062,CI:1.028,1.098)。支撑轴结构(花梗和花托)也具有超异速生长模式,花梗质量相对于花托质量的比例指数为α = 1.167(CI:1.106,1.235)。同样,所有四个叶状同源物(萼片、花瓣、雄蕊群和雌蕊群)的总鲜质量相对于两个支撑轴结构的生物量呈不成比例的比例关系(α = 1.169,CI:1.126,1.214),表明优先将资源分配给生殖器官和展示器官。这些发现与以下假设一致,即花冠大小等花展示性状主要通过吸引传粉者来增强花粉输出,同时通过对雌蕊群发育进行协调投资来维持坐果成功率。正如比例理论所预测的,所有器官成对比较中一致的超异速生长强调了发育整合在塑造蔷薇科花结构中的作用。通过整合形态测量和比例分析,本研究提出了一种易于处理的方法来研究单花物种的花资源分配,并提供了与这一在生态和园艺上具有重要意义的谱系内花性状的适应性模式一致的实证证据。