Shaposhnikov Leonid A, Rozanov Aleksei S, Sazonov Alexey E
Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia.
Int J Mol Sci. 2025 Aug 2;26(15):7483. doi: 10.3390/ijms26157483.
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous recombination, transposon mutagenesis, and phage-derived recombineering opened the door to targeted gene disruption, but low efficiencies and marker footprints limited throughput. Recent phage RecT/RecE-mediated recombineering and CRISPR/Cas counter-selection now enable scar-less point edits, seamless deletions, and multi-kilobase insertions at efficiencies approaching model organisms. Endogenous Cas9 systems, dCas-based CRISPR interference, and CRISPR-guided transposases further extend the toolbox, allowing multiplex knockouts, precise single-base mutations, conditional knockdowns, and payloads up to 10 kb. The remaining hurdles include strain-specific barriers, reliance on selection markers for large edits, and the limited host-range of recombinases. Nevertheless, convergence of phage enzymes, CRISPR counter-selection and high-throughput oligo recombineering is rapidly transforming LAB into versatile chassis for cell-factory and therapeutic applications.
乳酸菌(LAB)在食品、饲料和健康生物技术中至关重要,但其基因组长期以来一直难以进行快速、精确的操作。本综述梳理了乳酸菌基因组编辑策略的演变,从劳动强度大的依赖RecA的双交换到最先进的CRISPR和CRISPR相关转座酶系统。天然同源重组、转座子诱变和噬菌体衍生的重组工程为靶向基因破坏打开了大门,但效率低下和标记足迹限制了通量。最近噬菌体RecT/RecE介导的重组工程和CRISPR/Cas反选择现在能够实现无疤痕点编辑、无缝缺失和多千碱基插入,效率接近模式生物。内源性Cas9系统、基于dCas的CRISPR干扰和CRISPR引导的转座酶进一步扩展了工具箱,允许多重敲除、精确的单碱基突变、条件性敲低和高达10 kb的载荷。剩下的障碍包括菌株特异性障碍、对大编辑选择标记的依赖以及重组酶宿主范围有限。尽管如此,噬菌体酶、CRISPR反选择和高通量寡核苷酸重组工程的融合正在迅速将乳酸菌转变为用于细胞工厂和治疗应用的通用底盘。