Ncube Keith N, van den Bout Iman, Willers Clarissa, Gouws Chrisna, Cordier Werner
Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa.
Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa.
Int J Mol Sci. 2025 Aug 3;26(15):7503. doi: 10.3390/ijms26157503.
Chemoresistance is a major challenge in the treatment of triple-negative breast cancer (TNBC). Multicellular spheroids are an attractive platform for investigating chemoresistance in TNBC, as they replicate the cues of the tumour microenvironment in vivo. We conducted a comprehensive literature search to summarise the multifactorial and interlinked mechanisms driving chemoresistance in TNBC spheroids. These mechanisms include spatial heterogeneity, hypoxia, extracellular matrix remodelling, tumour-stroma crosstalk, drug efflux, apoptotic resistance, and cancer stem cell signalling. Strategies for overcoming chemoresistance in TNBC spheroids include nanocarrier systems to overcome spatial diffusion limitations, pathway inhibition, and targeting tumour-microenvironment interactions. Despite their advantages, some spheroid models face challenges such as low reproducibility, a lack of heterogeneity, variability in size and shape, limited vascularisation, and constraints in long-term culture. Advanced culturing platforms such as clinostat bioreactors allow for extended culture periods, enabling mature spheroid drug testing. Furthermore, advanced analytical techniques provide spatially resolved spheroid data. These multifactorial and interlinked mechanisms reflect the tumour microenvironment in vivo that spheroids recapitulate, rendering them valuable models for studying chemoresistance. The incorporation of stromal components and advanced analytical workflows will enhance the utility and translational relevance of spheroids as reliable preclinical models for drug discovery in TNBC.
化疗耐药是三阴性乳腺癌(TNBC)治疗中的一项重大挑战。多细胞球体是研究TNBC化疗耐药性的一个有吸引力的平台,因为它们能复制体内肿瘤微环境的线索。我们进行了全面的文献检索,以总结驱动TNBC球体化疗耐药的多因素和相互关联的机制。这些机制包括空间异质性、缺氧、细胞外基质重塑、肿瘤-基质相互作用、药物外排、凋亡抵抗和癌症干细胞信号传导。克服TNBC球体化疗耐药的策略包括纳米载体系统以克服空间扩散限制、通路抑制以及靶向肿瘤-微环境相互作用。尽管具有优势,但一些球体模型面临着诸如低重现性、缺乏异质性、大小和形状可变、血管化有限以及长期培养受限等挑战。诸如回转器生物反应器等先进的培养平台可延长培养时间,从而实现成熟球体的药物测试。此外,先进的分析技术可提供空间分辨的球体数据。这些多因素和相互关联的机制反映了球体模拟的体内肿瘤微环境,使其成为研究化疗耐药性的有价值模型。纳入基质成分和先进的分析工作流程将提高球体作为TNBC药物发现可靠临床前模型的实用性和转化相关性。
Biochim Biophys Acta Mol Basis Dis. 2025-8
Breast Cancer Res. 2024-12-20
Chem Biomed Imaging. 2025-1-21
Int J Mol Sci. 2025-3-28
Breast Cancer (Dove Med Press). 2025-3-17
J Hematol Oncol. 2025-3-18
Int J Mol Sci. 2025-3-3
ACS Appl Bio Mater. 2025-4-21
Signal Transduct Target Ther. 2025-2-21