Suppr超能文献

用于增强甲烷制甲醇转化的CuO@CN应变工程

Strain Engineering of CuO@CN for Enhanced Methane-to-Methanol Conversion.

作者信息

Kuai Shuxin, Li Bo, Liu Jingyao

机构信息

Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.

Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.

出版信息

Molecules. 2025 Jul 23;30(15):3073. doi: 10.3390/molecules30153073.

Abstract

Inspired by the active site of methane monooxygenase, we designed a CuO cluster anchored in the six-membered nitrogen cavity of a CN monolayer (CuO@CN) as a stable and efficient enzyme-like catalyst. Density functional theory (DFT) calculations reveal that the bridged Cu-O-Cu structure within CN exhibits strong electronic coupling, which is favorable for methanol formation. Two competing mechanisms-the concerted and radical-rebound pathways-were systematically investigated, with the former being energetically preferred due to lower energy barriers and more stable intermediate states. Furthermore, strain engineering was employed to tune the geometric and electronic structure of the Cu-O-Cu site. Biaxial strain modulates the Cu-O-Cu bond angle, adsorption properties, and d-band center alignment, thereby selectively enhancing the concerted pathway. A volcano-like trend was observed between the applied strain and the methanol formation barrier, with 1% tensile strain yielding the overall energy barrier to methanol formation (ΔG) as low as 1.31 eV. NO effectively regenerated the active site and demonstrated strain-responsive kinetics. The electronic descriptor Δε (ε - ε) captured the structure-activity relationship, confirming the role of strain in regulating catalytic performance. This work highlights the synergy between geometric confinement and mechanical modulation, offering a rational design strategy for advanced C1 activation catalysts.

摘要

受甲烷单加氧酶活性位点的启发,我们设计了一种锚定在CN单层六元氮腔中的CuO簇(CuO@CN)作为一种稳定且高效的类酶催化剂。密度泛函理论(DFT)计算表明,CN内的桥连Cu-O-Cu结构表现出强电子耦合,这有利于甲醇的形成。系统研究了两种竞争机制——协同和自由基反弹途径,由于能量壁垒较低和中间态更稳定,前者在能量上更占优势。此外,采用应变工程来调节Cu-O-Cu位点的几何和电子结构。双轴应变调节Cu-O-Cu键角、吸附性能和d带中心排列,从而选择性地增强协同途径。在施加的应变与甲醇形成壁垒之间观察到类似火山的趋势,1%的拉伸应变使甲醇形成的总能量壁垒(ΔG)低至1.31 eV。NO有效地再生了活性位点并表现出应变响应动力学。电子描述符Δε(ε - ε)捕捉到了结构-活性关系,证实了应变在调节催化性能中的作用。这项工作突出了几何限制和机械调制之间的协同作用,为先进的C1活化催化剂提供了一种合理的设计策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0667/12348963/ce619e7e1227/molecules-30-03073-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验