Yang Xindong, Xu Yi, Zhu Dongchen, Mi Xianqiang
School of Microelectronics, Shanghai University, Shanghai 200444, China.
Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
Molecules. 2025 Aug 7;30(15):3305. doi: 10.3390/molecules30153305.
Gelatin methacrylate (GelMA) microgels serve as promising bioscaffolds for tissue engineering and drug screening. However, conventional solid GelMA microgels often exhibit limited mass transfer efficiency and provide insufficient protection for embedded cells. In this study, we developed a droplet-based microfluidic platform to fabricate core-shell structured GelMA microgels. This system enabled precise control over microgel size and core-to-shell ratio by modulating flow rates. Encapsulation of A549 cells within these core-shell microgels preserved cellular viability and facilitated the formation of three-dimensional tumor spheroids. These outcomes confirmed both the protective function of the core-shell architecture during encapsulation and the overall biocompatibility of the microgels. The developed GelMA core-shell microgel system presents considerable applicability in research domains such as organoid modeling and high-throughput pharmacological screening.
甲基丙烯酸明胶(GelMA)微凝胶是用于组织工程和药物筛选的很有前景的生物支架。然而,传统的固态GelMA微凝胶通常表现出有限的传质效率,并且对包埋的细胞提供的保护不足。在本研究中,我们开发了一种基于液滴的微流控平台来制备核壳结构的GelMA微凝胶。该系统通过调节流速实现了对微凝胶尺寸和核壳比的精确控制。将A549细胞封装在这些核壳微凝胶中可保持细胞活力,并促进三维肿瘤球体的形成。这些结果证实了核壳结构在封装过程中的保护作用以及微凝胶的整体生物相容性。所开发的GelMA核壳微凝胶系统在类器官建模和高通量药理筛选等研究领域具有相当大的适用性。