Suppr超能文献

基于物联网机器学习的盲人移动传感器单元。

An IoT Machine Learning-Based Mobile Sensors Unit for Visually Impaired People.

机构信息

Department of Computer Science and Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.

出版信息

Sensors (Basel). 2022 Jul 12;22(14):5202. doi: 10.3390/s22145202.

Abstract

Visually impaired people face many challenges that limit their ability to perform daily tasks and interact with the surrounding world. Navigating around places is one of the biggest challenges that face visually impaired people, especially those with complete loss of vision. As the Internet of Things (IoT) concept starts to play a major role in smart cities applications, visually impaired people can be one of the benefitted clients. In this paper, we propose a smart IoT-based mobile sensors unit that can be attached to an off-the-shelf cane, hereafter a smart cane, to facilitate independent movement for visually impaired people. The proposed mobile sensors unit consists of a six-axis accelerometer/gyro, ultrasonic sensors, GPS sensor, cameras, a digital motion processor and a single credit-card-sized single-board microcomputer. The unit is used to collect information about the cane user and the surrounding obstacles while on the move. An embedded machine learning algorithm is developed and stored in the microcomputer memory to identify the detected obstacles and alarm the user about their nature. In addition, in case of emergencies such as a cane fall, the unit alerts the cane user and their guardian. Moreover, a mobile application is developed to be used by the guardian to track the cane user via Google Maps using a mobile handset to ensure safety. To validate the system, a prototype was developed and tested.

摘要

视障人士面临着许多挑战,这些挑战限制了他们执行日常任务和与周围世界互动的能力。在周围环境中导航是视障人士面临的最大挑战之一,尤其是那些完全失明的人。随着物联网(IoT)概念开始在智慧城市应用中发挥重要作用,视障人士可以成为受益客户之一。在本文中,我们提出了一种基于智能物联网的移动传感器单元,可以附加到现成的手杖上,以下简称智能手杖,以方便视障人士独立移动。拟议的移动传感器单元由六轴加速度计/陀螺仪、超声波传感器、GPS 传感器、摄像头、数字运动处理器和单张信用卡大小的单板微计算机组成。该单元用于在移动过程中收集有关手杖用户和周围障碍物的信息。开发并存储在微计算机内存中的嵌入式机器学习算法用于识别检测到的障碍物,并向用户发出有关其性质的警报。此外,在发生手杖掉落等紧急情况时,该单元会向手杖用户及其监护人发出警报。此外,还开发了一个移动应用程序,供监护人使用移动手机通过谷歌地图跟踪手杖用户,以确保安全。为了验证该系统,开发并测试了一个原型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bf9/9316426/1c45eca17cb5/sensors-22-05202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验