Kang Shilu, Li Dongfang, Xu Jiaxin, Mei Aokun, Huo Hua
Information Engineering College, Henan University of Science and Technology, Luoyang 471000, China.
Sensors (Basel). 2025 Jul 24;25(15):4580. doi: 10.3390/s25154580.
Accurate classification of chest X-ray (CXR) images is crucial for diagnosing lung diseases in medical imaging. Existing deep learning models for CXR image classification face challenges in distinguishing non-lung features. In this work, we propose a new segmentation-assisted fusion-based classification method. The method involves two stages: first, we use a lightweight segmentation model, Partial Convolutional Segmentation Network (PCSNet) designed based on an encoder-decoder architecture, to accurately obtain lung masks from CXR images. Then, a fusion of the masked CXR image with the original image enables classification using the improved lightweight ShuffleNetV2 model. The proposed method is trained and evaluated on segmentation datasets including the Montgomery County Dataset (MC) and Shenzhen Hospital Dataset (SH), and classification datasets such as Chest X-Ray Images for Pneumonia (CXIP) and COVIDx. Compared with seven segmentation models (U-Net, Attention-Net, SegNet, FPNNet, DANet, DMNet, and SETR), five classification models (ResNet34, ResNet50, DenseNet121, Swin-Transforms, and ShuffleNetV2), and state-of-the-art methods, our PCSNet model achieved high segmentation performance on CXR images. Compared to the state-of-the-art Attention-Net model, the accuracy of PCSNet increased by 0.19% (98.94% vs. 98.75%), and the boundary accuracy improved by 0.3% (97.86% vs. 97.56%), while requiring 62% fewer parameters. For pneumonia classification using the CXIP dataset, the proposed strategy outperforms the current best model by 0.14% in accuracy (98.55% vs. 98.41%). For COVID-19 classification with the COVIDx dataset, the model reached an accuracy of 97.50%, the absolute improvement in accuracy compared to CovXNet was 0.1%, and clinical metrics demonstrate more significant gains: specificity increased from 94.7% to 99.5%. These results highlight the model's effectiveness in medical image analysis, demonstrating clinically meaningful improvements over state-of-the-art approaches.
胸部X光(CXR)图像的准确分类对于医学成像中肺部疾病的诊断至关重要。现有的用于CXR图像分类的深度学习模型在区分非肺部特征方面面临挑战。在这项工作中,我们提出了一种新的基于分割辅助融合的分类方法。该方法包括两个阶段:首先,我们使用基于编码器-解码器架构设计的轻量级分割模型——部分卷积分割网络(PCSNet),从CXR图像中准确获取肺部掩码。然后,将带掩码的CXR图像与原始图像进行融合,以便使用改进的轻量级ShuffleNetV2模型进行分类。所提出的方法在包括蒙哥马利县数据集(MC)和深圳医院数据集(SH)的分割数据集以及诸如肺炎胸部X光图像(CXIP)和COVIDx等分类数据集上进行训练和评估。与七个分割模型(U-Net、Attention-Net、SegNet、FPNNet、DANet、DMNet和SETR)、五个分类模型(ResNet34、ResNet50、DenseNet121、Swin-Transforms和ShuffleNetV2)以及最先进的方法相比,我们的PCSNet模型在CXR图像上实现了高分割性能。与最先进的Attention-Net模型相比,PCSNet的准确率提高了0.19%(98.94%对98.75%),边界准确率提高了0.3%(97.86%对97.56%),同时所需参数减少了62%。对于使用CXIP数据集进行肺炎分类,所提出的策略在准确率上比当前最佳模型高出0.14%(98.55%对98.41%)。对于使用COVIDx数据集进行COVID-19分类,该模型的准确率达到97.50%,与CovXNet相比,准确率的绝对提高为0.1%,临床指标显示出更显著的提升:特异性从94.7%提高到99.5%。这些结果突出了该模型在医学图像分析中的有效性,表明与最先进的方法相比有临床意义的改进。
Sensors (Basel). 2025-7-24
Biomed Phys Eng Express. 2025-9-1
Biomed Phys Eng Express. 2025-8-5
Med Biol Eng Comput. 2024-2-3
Int Ophthalmol. 2025-6-27
IEEE J Biomed Health Inform. 2022-12
Lancet Respir Med. 2023-1
Biomed Signal Process Control. 2022-9
Expert Syst Appl. 2022-10-15
Sci Rep. 2022-5-23
Pattern Recognit Lett. 2022-1
Appl Intell (Dordr). 2021