文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于分割辅助融合的自动胸部X光图像分析分类方法

Segmentation-Assisted Fusion-Based Classification for Automated CXR Image Analysis.

作者信息

Kang Shilu, Li Dongfang, Xu Jiaxin, Mei Aokun, Huo Hua

机构信息

Information Engineering College, Henan University of Science and Technology, Luoyang 471000, China.

出版信息

Sensors (Basel). 2025 Jul 24;25(15):4580. doi: 10.3390/s25154580.


DOI:10.3390/s25154580
PMID:40807746
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349148/
Abstract

Accurate classification of chest X-ray (CXR) images is crucial for diagnosing lung diseases in medical imaging. Existing deep learning models for CXR image classification face challenges in distinguishing non-lung features. In this work, we propose a new segmentation-assisted fusion-based classification method. The method involves two stages: first, we use a lightweight segmentation model, Partial Convolutional Segmentation Network (PCSNet) designed based on an encoder-decoder architecture, to accurately obtain lung masks from CXR images. Then, a fusion of the masked CXR image with the original image enables classification using the improved lightweight ShuffleNetV2 model. The proposed method is trained and evaluated on segmentation datasets including the Montgomery County Dataset (MC) and Shenzhen Hospital Dataset (SH), and classification datasets such as Chest X-Ray Images for Pneumonia (CXIP) and COVIDx. Compared with seven segmentation models (U-Net, Attention-Net, SegNet, FPNNet, DANet, DMNet, and SETR), five classification models (ResNet34, ResNet50, DenseNet121, Swin-Transforms, and ShuffleNetV2), and state-of-the-art methods, our PCSNet model achieved high segmentation performance on CXR images. Compared to the state-of-the-art Attention-Net model, the accuracy of PCSNet increased by 0.19% (98.94% vs. 98.75%), and the boundary accuracy improved by 0.3% (97.86% vs. 97.56%), while requiring 62% fewer parameters. For pneumonia classification using the CXIP dataset, the proposed strategy outperforms the current best model by 0.14% in accuracy (98.55% vs. 98.41%). For COVID-19 classification with the COVIDx dataset, the model reached an accuracy of 97.50%, the absolute improvement in accuracy compared to CovXNet was 0.1%, and clinical metrics demonstrate more significant gains: specificity increased from 94.7% to 99.5%. These results highlight the model's effectiveness in medical image analysis, demonstrating clinically meaningful improvements over state-of-the-art approaches.

摘要

胸部X光(CXR)图像的准确分类对于医学成像中肺部疾病的诊断至关重要。现有的用于CXR图像分类的深度学习模型在区分非肺部特征方面面临挑战。在这项工作中,我们提出了一种新的基于分割辅助融合的分类方法。该方法包括两个阶段:首先,我们使用基于编码器-解码器架构设计的轻量级分割模型——部分卷积分割网络(PCSNet),从CXR图像中准确获取肺部掩码。然后,将带掩码的CXR图像与原始图像进行融合,以便使用改进的轻量级ShuffleNetV2模型进行分类。所提出的方法在包括蒙哥马利县数据集(MC)和深圳医院数据集(SH)的分割数据集以及诸如肺炎胸部X光图像(CXIP)和COVIDx等分类数据集上进行训练和评估。与七个分割模型(U-Net、Attention-Net、SegNet、FPNNet、DANet、DMNet和SETR)、五个分类模型(ResNet34、ResNet50、DenseNet121、Swin-Transforms和ShuffleNetV2)以及最先进的方法相比,我们的PCSNet模型在CXR图像上实现了高分割性能。与最先进的Attention-Net模型相比,PCSNet的准确率提高了0.19%(98.94%对98.75%),边界准确率提高了0.3%(97.86%对97.56%),同时所需参数减少了62%。对于使用CXIP数据集进行肺炎分类,所提出的策略在准确率上比当前最佳模型高出0.14%(98.55%对98.41%)。对于使用COVIDx数据集进行COVID-19分类,该模型的准确率达到97.50%,与CovXNet相比,准确率的绝对提高为0.1%,临床指标显示出更显著的提升:特异性从94.7%提高到99.5%。这些结果突出了该模型在医学图像分析中的有效性,表明与最先进的方法相比有临床意义的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/b62e1b0a1827/sensors-25-04580-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/c9ce21978656/sensors-25-04580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/1bfa7b77563e/sensors-25-04580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/4b2c79c79d7b/sensors-25-04580-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/52f996875edb/sensors-25-04580-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/fa79888e61f1/sensors-25-04580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/481557e6814a/sensors-25-04580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/ffc0e59880a7/sensors-25-04580-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/b62e1b0a1827/sensors-25-04580-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/c9ce21978656/sensors-25-04580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/1bfa7b77563e/sensors-25-04580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/4b2c79c79d7b/sensors-25-04580-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/52f996875edb/sensors-25-04580-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/fa79888e61f1/sensors-25-04580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/481557e6814a/sensors-25-04580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/ffc0e59880a7/sensors-25-04580-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cd/12349148/b62e1b0a1827/sensors-25-04580-g008.jpg

相似文献

[1]
Segmentation-Assisted Fusion-Based Classification for Automated CXR Image Analysis.

Sensors (Basel). 2025-7-24

[2]
DDA-SSNets: Dual decoder attention-based semantic segmentation networks for COVID-19 infection segmentation and classification using chest X-Ray images.

J Xray Sci Technol. 2024

[3]
CXR-MultiTaskNet a unified deep learning framework for joint disease localization and classification in chest radiographs.

Sci Rep. 2025-8-31

[4]
A medical image classification method based on self-regularized adversarial learning.

Med Phys. 2024-11

[5]
Dual-branch attention fusion network for pneumonia detection.

Biomed Phys Eng Express. 2025-9-1

[6]
A lightweight hybrid DL model for multi-class chest x-ray classification for pulmonary diseases.

Biomed Phys Eng Express. 2025-8-5

[7]
Point-cloud segmentation with in-silico data augmentation for prostate cancer treatment.

Med Phys. 2025-4-3

[8]
Large-scale convolutional neural network for clinical target and multi-organ segmentation in gynecologic brachytherapy via multi-stage learning.

Med Phys. 2025-8

[9]
GIFNet: an effective global infection feature network for automatic COVID-19 lung lesions segmentation.

Med Biol Eng Comput. 2024-2-3

[10]
.

Int Ophthalmol. 2025-6-27

本文引用的文献

[1]
High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images.

Comput Biol Med. 2023-3

[2]
A Dual-Branch Network for Diagnosis of Thorax Diseases From Chest X-Rays.

IEEE J Biomed Health Inform. 2022-12

[3]
Home monitoring in interstitial lung diseases.

Lancet Respir Med. 2023-1

[4]
An adaptive and altruistic PSO-based deep feature selection method for Pneumonia detection from Chest X-rays.

Appl Soft Comput. 2022-10

[5]
Deep learning-based approach for detecting COVID-19 in chest X-rays.

Biomed Signal Process Control. 2022-9

[6]
COVID-19 detection on Chest X-ray images: A comparison of CNN architectures and ensembles.

Expert Syst Appl. 2022-10-15

[7]
Automatic lung segmentation in chest X-ray images using improved U-Net.

Sci Rep. 2022-5-23

[8]
Segmentation and classification on chest radiography: a systematic survey.

Vis Comput. 2023

[9]
Application of CycleGAN and transfer learning techniques for automated detection of COVID-19 using X-ray images.

Pattern Recognit Lett. 2022-1

[10]
Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network.

Appl Intell (Dordr). 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索