Henan University of Technology, Zhengzhou, 450001, China.
Nanyang Central Hospital, Nanyang, 473009, China.
Sci Rep. 2022 May 23;12(1):8649. doi: 10.1038/s41598-022-12743-y.
The automatic segmentation of the lung region for chest X-ray (CXR) can help doctors diagnose many lung diseases. However, extreme lung shape changes and fuzzy lung regions caused by serious lung diseases may incorrectly make the automatic lung segmentation model. We improved the U-Net network by using the pre-training Efficientnet-b4 as the encoder and the Residual block and the LeakyReLU activation function in the decoder. The network can extract Lung field features efficiently and avoid the gradient instability caused by the multiplication effect in gradient backpropagation. Compared with the traditional U-Net model, our method improves about 2.5% dice coefficient and 6% Jaccard Index for the two benchmark lung segmentation datasets. Our model improves about 5% dice coefficient and 9% Jaccard Index for the private lung segmentation datasets compared with the traditional U-Net model. Comparative experiments show that our method can improve the accuracy of lung segmentation of CXR images and it has a lower standard deviation and good robustness.
胸部 X 射线(CXR)的肺部自动分割有助于医生诊断许多肺部疾病。然而,严重肺部疾病引起的极端肺部形状变化和模糊肺部区域可能会使自动肺部分割模型出错。我们通过使用预训练的 Efficientnet-b4 作为编码器以及残差块和 LeakyReLU 激活函数在解码器中改进了 U-Net 网络。该网络可以有效地提取肺部区域特征,并避免梯度反向传播中乘法效应引起的梯度不稳定。与传统的 U-Net 模型相比,我们的方法将两个基准肺部分割数据集的骰子系数提高了约 2.5%,Jaccard 指数提高了约 6%。与传统的 U-Net 模型相比,我们的模型在私有肺部分割数据集上将骰子系数提高了约 5%,Jaccard 指数提高了约 9%。对比实验表明,我们的方法可以提高 CXR 图像的肺部分割准确性,并且具有较低的标准差和良好的鲁棒性。