Reimeir Benjamin, Leininger Amelie, Edlinger Raimund, Nüchter Andreas, Grömer Gernot
Institute of Mechatronics, University of Innsbruck, 6020 Innsbruck, Austria.
Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria.
Sensors (Basel). 2025 Jul 25;25(15):4615. doi: 10.3390/s25154615.
Future planetary exploration missions will rely heavily on efficient human-robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of a digital twin for the AMADEE-24 analog Mars mission, organized by the Austrian Space Forum and conducted in Armenia in March 2024. Alternative local positioning methods were evaluated to enhance the system's utility in Global Navigation Satellite System (GNSS)-denied environments. The digital twin integrates telemetry from the Aouda space suit simulators, inertial measurement unit motion capture (IMU-MoCap), and sensor data from the Intuitive Rover Operation and Collecting Samples (iROCS) rover. All nine experiment runs were reconstructed successfully by the developed digital twin. A comparative analysis of localization methods found that Simultaneous Localization and Mapping (SLAM)-based rover positioning and IMU-MoCap localization of the astronaut matched Global Positioning System (GPS) performance. Adaptive Cluster Detection showed significantly higher deviations compared to the previous GNSS alternatives. However, the IMU-MoCap method was limited by discontinuous segment-wise measurements, which required intermittent GPS recalibration. Despite these limitations, the results highlight the potential of alternative localization techniques for digital twin integration.
未来的行星探索任务将严重依赖高效的人机交互,以确保宇航员安全并最大化科学回报。在此背景下,数字孪生为舱外活动的规划、模拟和优化提供了一个有前景的工具。本研究展示了为AMADEE - 24模拟火星任务开发和评估的数字孪生,该任务由奥地利空间论坛组织并于2024年3月在亚美尼亚进行。对替代的局部定位方法进行了评估,以提高系统在全球导航卫星系统(GNSS)信号受阻环境中的实用性。该数字孪生整合了奥德太空服模拟器的遥测数据、惯性测量单元动作捕捉(IMU - MoCap)以及来自直观漫游车操作与采样(iROCS)漫游车的传感器数据。已开发的数字孪生成功重建了所有九次实验运行。对定位方法的比较分析发现,基于同时定位与地图构建(SLAM)的漫游车定位以及宇航员的IMU - MoCap定位与全球定位系统(GPS)性能相当。与之前的GNSS替代方法相比,自适应聚类检测显示出明显更高的偏差。然而,IMU - MoCap方法受分段测量不连续的限制,这需要间歇性的GPS重新校准。尽管存在这些限制,结果凸显了替代定位技术在数字孪生集成方面的潜力。