用于脑部研究的超导量子磁力计。
Superconducting Quantum Magnetometers for Brain Investigations.
作者信息
Bonavolontà Carmela, Vettoliere Antonio, Sorrentino Pierpaolo, Granata Carmine
机构信息
Consiglio Nazionale delle Ricerche, Institute of Applied Sciences and Intelligent Systems, via Campi Flegrei 34, 80078 Pozzuoli, Italy.
Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
出版信息
Sensors (Basel). 2025 Jul 25;25(15):4625. doi: 10.3390/s25154625.
This review article aims to provide an overview of superconducting magnetic quantum sensors and their applications in the biomedical field, particularly in the neurological field. These quantum sensors are based on superconducting quantum interference devices (SQUIDs), the operating principles of which will be presented along with the most relevant characteristics. Emphasis will be placed on the magnetic flux and magnetic field noise, which are essential for applications, especially brain investigations requiring ultra-high magnetic field sensitivity. The main configurations of SQUID magnetometers used for highly sensitive applications will be shown, stressing their design aspects. In particular, the configurations based on the superconducting flux transformer and the multiloop will be explained. We will discuss the most critical application of SQUID magnetometers, magnetoencephalography, which measures the weak magnetic signals produced by neuronal currents. Starting from the realization of a multichannel system for magnetoencephalography, we will present an accurate comparison with recent systems using optically pumped magnetometers. Finally, we will discuss the main clinical applications of magnetoencephalography.
这篇综述文章旨在概述超导磁量子传感器及其在生物医学领域,特别是神经学领域的应用。这些量子传感器基于超导量子干涉器件(SQUIDs),其工作原理将与最相关的特性一同介绍。重点将放在磁通量和磁场噪声上,这对于应用至关重要,尤其是对于需要超高磁场灵敏度的脑部研究。将展示用于高灵敏度应用的超导量子干涉仪磁强计的主要配置,并强调其设计方面。特别是,将解释基于超导通量变压器和多环的配置。我们将讨论超导量子干涉仪磁强计最关键的应用——脑磁图,它测量神经元电流产生的微弱磁信号。从实现用于脑磁图的多通道系统开始,我们将与最近使用光泵磁强计的系统进行精确比较。最后,我们将讨论脑磁图的主要临床应用。