孪生人工智能:融合数字孪生与人工智能的智能屏障涡流分离器
Twin-AI: Intelligent Barrier Eddy Current Separator with Digital Twin and AI Integration.
作者信息
Kia Shohreh, Mayer Johannes B, Westphal Erik, Leiding Benjamin
机构信息
Institute for Software and Systems Engineering, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany.
ESD Elektro Systemtechnik Dargun GmbH, 17159 Dargun, Germany.
出版信息
Sensors (Basel). 2025 Jul 31;25(15):4731. doi: 10.3390/s25154731.
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly from the working separator under 81 different operational scenarios. The intelligent models were used to recommend optimal settings for drum speed, belt speed, vibration intensity, and drum angle, thereby maximizing separation quality and minimizing energy consumption. the smart separation module utilizes YOLOv11n-seg and achieves a mean average precision (mAP) of 0.838 across 7163 industrial instances from aluminum, copper, and plastic materials. For shape classification (sharp vs. smooth), the model reached 91.8% accuracy across 1105 annotated samples. Furthermore, the thermal monitoring unit can detect iron contamination by analyzing temperature anomalies. Scenarios with iron showed a maximum temperature increase of over 20 °C compared to clean materials, with a detection response time of under 2.5 s. The architecture integrates a Digital Twin using Azure Digital Twins to virtually mirror the system, enabling real-time tracking, behavior simulation, and remote updates. A full connection with the PLC has been implemented, allowing the AI-driven system to adjust physical parameters autonomously. This combination of AI, IoT, and digital twin technologies delivers a reliable and scalable solution for enhanced separation quality, improved operational safety, and predictive maintenance in industrial recycling environments.
本文介绍了一种综合智能系统,旨在优化屏障式涡电流分离器(BECS)的性能,该分离器包括传送带、振动给料机和磁鼓。该系统在直接从工作分离器收集的81种不同运行场景下的实际工业数据上进行了训练和验证。智能模型用于推荐磁鼓速度、皮带速度、振动强度和磁鼓角度的最佳设置,从而最大限度地提高分离质量并最小化能耗。智能分离模块利用YOLOv11n-seg,在来自铝、铜和塑料材料的7163个工业实例中实现了0.838的平均精度均值(mAP)。对于形状分类(尖锐与光滑),该模型在1105个带注释样本中达到了91.8%的准确率。此外,热监测单元可以通过分析温度异常来检测铁污染。与清洁材料相比,含铁场景的最高温度升高超过20°C,检测响应时间在2.5秒以内。该架构使用Azure Digital Twins集成了数字孪生,以虚拟镜像系统,实现实时跟踪、行为模拟和远程更新。已实现与PLC的完全连接,使人工智能驱动的系统能够自主调整物理参数。人工智能、物联网和数字孪生技术的这种结合为工业回收环境中提高分离质量、改善操作安全性和进行预测性维护提供了可靠且可扩展的解决方案。