文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于边缘计算设备的可扩展快速 YOLO 设计。

Design of a Scalable and Fast YOLO for Edge-Computing Devices.

机构信息

Electronics and Telecommunications Research Institute, Daegu 42994, Korea.

School of Electronics Engineering, Graduate School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea.

出版信息

Sensors (Basel). 2020 Nov 27;20(23):6779. doi: 10.3390/s20236779.


DOI:10.3390/s20236779
PMID:33260957
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7729998/
Abstract

With the increase in research cases of the application of a convolutional neural network (CNN)-based object detection technology, studies on the light-weight CNN models that can be performed in real time on the edge-computing devices are also increasing. This paper proposed scalable convolutional blocks that can be easily designed CNN networks of You Only Look Once (YOLO) detector which have the balanced processing speed and accuracy of the target edge-computing devices considering different performances by exchanging the proposed blocks simply. The maximum number of kernels of the convolutional layer was determined through simple but intuitive speed comparison tests for three edge-computing devices to be considered. The scalable convolutional blocks were designed in consideration of the limited maximum number of kernels to detect objects in real time on these edge-computing devices. Three scalable and fast YOLO detectors (SF-YOLO) which designed using the proposed scalable convolutional blocks compared the processing speed and accuracy with several conventional light-weight YOLO detectors on the edge-computing devices. When compared with YOLOv3-tiny, SF-YOLO was seen to be 2 times faster than the previous processing speed but with the same accuracy as YOLOv3-tiny, and also, a 48% improved processing speed than the YOLOv3-tiny-PRN which is the processing speed improvement model. Also, even in the large SF-YOLO model that focuses on the accuracy performance, it achieved a 10% faster processing speed with better accuracy of 40.4% mAP@0.5 in the MS COCO dataset than YOLOv4-tiny model.

摘要

随着卷积神经网络(CNN)-基于目标检测技术应用研究案例的增加,研究能够在边缘计算设备上实时执行的轻量级 CNN 模型的研究也在增加。本文提出了可扩展卷积块,可以轻松设计具有平衡处理速度和精度的 You Only Look Once (YOLO) 检测器的 CNN 网络,同时考虑到不同性能,可以通过简单地交换这些块来实现。通过对三个边缘计算设备进行简单而直观的速度比较测试,确定了卷积层的最大核数。为了在这些边缘计算设备上实时检测物体,设计了可扩展卷积块,考虑到最大核数的限制。使用提出的可扩展卷积块设计了三个可扩展和快速的 YOLO 检测器(SF-YOLO),并在边缘计算设备上与几个传统的轻量级 YOLO 检测器比较了处理速度和准确性。与 YOLOv3-tiny 相比,SF-YOLO 的处理速度快了 2 倍,但与 YOLOv3-tiny 的准确性相同,并且比 YOLOv3-tiny-PRN 的处理速度提高了 48%,YOLOv3-tiny-PRN 是一种处理速度提高模型。此外,即使在注重准确性性能的大型 SF-YOLO 模型中,它在 MS COCO 数据集上的 mAP@0.5 精度也达到了 40.4%,比 YOLOv4-tiny 模型快了 10%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/b66a735d302f/sensors-20-06779-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/a11c9509adec/sensors-20-06779-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/960ec7029ea1/sensors-20-06779-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/8a69d66c4d93/sensors-20-06779-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/f19abea382c0/sensors-20-06779-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/b66a735d302f/sensors-20-06779-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/a11c9509adec/sensors-20-06779-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/960ec7029ea1/sensors-20-06779-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/8a69d66c4d93/sensors-20-06779-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/f19abea382c0/sensors-20-06779-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/7729998/b66a735d302f/sensors-20-06779-g005.jpg

相似文献

[1]
Design of a Scalable and Fast YOLO for Edge-Computing Devices.

Sensors (Basel). 2020-11-27

[2]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[3]
Mixed YOLOv3-LITE: A Lightweight Real-Time Object Detection Method.

Sensors (Basel). 2020-3-27

[4]
JRL-YOLO: A Novel Jump-Join Repetitious Learning Structure for Real-Time Dangerous Object Detection.

Comput Intell Neurosci. 2021-4-1

[5]
Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD.

Sensors (Basel). 2020-8-31

[6]
YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery.

Sensors (Basel). 2023-2-7

[7]
Improved YOLO-V3 with DenseNet for Multi-Scale Remote Sensing Target Detection.

Sensors (Basel). 2020-7-31

[8]
Real-Time Plant Leaf Counting Using Deep Object Detection Networks.

Sensors (Basel). 2020-12-3

[9]
Pine Cone Detection Using Boundary Equilibrium Generative Adversarial Networks and Improved YOLOv3 Model.

Sensors (Basel). 2020-8-8

[10]
Comparative Evaluation of Convolutional Neural Network Object Detection Algorithms for Vehicle Detection.

J Imaging. 2024-7-5

引用本文的文献

[1]
Twin-AI: Intelligent Barrier Eddy Current Separator with Digital Twin and AI Integration.

Sensors (Basel). 2025-7-31

[2]
A Dragon Fruit Picking Detection Method Based on YOLOv7 and PSP-Ellipse.

Sensors (Basel). 2023-4-7

[3]
An Embedded Framework for Fully Autonomous Object Manipulation in Robotic-Empowered Assisted Living.

Sensors (Basel). 2022-12-22

[4]
Adopting the YOLOv4 Architecture for Low-Latency Multispectral Pedestrian Detection in Autonomous Driving.

Sensors (Basel). 2022-1-30

[5]
An Approximate GEMM Unit for Energy-Efficient Object Detection.

Sensors (Basel). 2021-6-18

本文引用的文献

[1]
Improved YOLO-V3 with DenseNet for Multi-Scale Remote Sensing Target Detection.

Sensors (Basel). 2020-7-31

[2]
Mixed YOLOv3-LITE: A Lightweight Real-Time Object Detection Method.

Sensors (Basel). 2020-3-27

[3]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索