Zhang Tong, Peng Xinjie, Liu Yifan, Yin Kaiyang, Li Pengfei
School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China.
Sensors (Basel). 2025 Aug 1;25(15):4744. doi: 10.3390/s25154744.
The phase-sensitive optical time-domain reflectometry (Φ-OTDR) system has shown substantial potential in distributed acoustic sensing applications. Accurate event classification is crucial for effective deployment of Φ-OTDR systems, and various methods have been proposed for event classification in Φ-OTDR systems. However, most existing methods typically rely on sufficient labeled signal data for model training, which poses a major bottleneck in applying these methods due to the expensive and laborious process of labeling extensive data. To address this limitation, we propose CLWTNet, a novel contrastive representation learning method enhanced with wavelet transform convolution for event classification in Φ-OTDR systems. CLWTNet learns robust and discriminative representations directly from unlabeled signal data by transforming time-domain signals into STFT images and employing contrastive learning to maximize inter-class separation while preserving intra-class similarity. Furthermore, CLWTNet incorporates wavelet transform convolution to enhance its capacity to capture intricate features of event signals. The experimental results demonstrate that CLWTNet achieves competitive performance with the supervised representation learning methods and superior performance to unsupervised representation learning methods, even when training with unlabeled signal data. These findings highlight the effectiveness of CLWTNet in extracting discriminative representations without relying on labeled data, thereby enhancing data efficiency and reducing the costs and effort involved in extensive data labeling in practical Φ-OTDR system applications.
相敏光时域反射仪(Φ-OTDR)系统在分布式声学传感应用中已展现出巨大潜力。准确的事件分类对于Φ-OTDR系统的有效部署至关重要,并且已经提出了各种用于Φ-OTDR系统中事件分类的方法。然而,大多数现有方法通常依赖足够的带标签信号数据进行模型训练,由于标记大量数据的过程昂贵且费力,这在应用这些方法时构成了一个主要瓶颈。为了解决这一限制,我们提出了CLWTNet,这是一种新颖的对比表示学习方法,通过小波变换卷积增强,用于Φ-OTDR系统中的事件分类。CLWTNet通过将时域信号转换为短时傅里叶变换(STFT)图像,并采用对比学习来最大化类间分离同时保持类内相似性,直接从未标记的信号数据中学习鲁棒且有区分性的表示。此外,CLWTNet结合小波变换卷积以增强其捕获事件信号复杂特征的能力。实验结果表明,即使在使用未标记信号数据进行训练时,CLWTNet也能与有监督表示学习方法取得有竞争力的性能,并且优于无监督表示学习方法。这些发现突出了CLWTNet在不依赖标记数据的情况下提取有区分性表示的有效性,从而提高了数据效率,并降低了实际Φ-OTDR系统应用中大量数据标记所涉及的成本和工作量。