Gupta Ekta, Gupta Varun
Chandigarh College of Engineering and Technology, Punjab University, Chandigarh, India.
Health Inf Sci Syst. 2024 Nov 29;13(1):2. doi: 10.1007/s13755-024-00316-4. eCollection 2025 Dec.
Histopathological images, characterized by their high resolution and intricate cellular structures, present unique challenges for automated analysis. Traditional supervised learning-based methods often rely on extensive labeled datasets, which are labour-intensive and expensive. In learning representations, self-supervised learning techniques have shown promising outcomes directly from raw image data without manual annotations. In this paper, we propose a novel margin-aware optimized contrastive learning approach to enhance representation learning from histopathological images using a self-supervised approach. The proposed approach optimizes contrastive learning with a margin-based strategy to effectively learn discriminative representations while enforcing a semantic similarity threshold. In the proposed loss function, a margin is used to enforce a certain level of similarity between positive pairs in the embedding space, and a scaling factor is introduced to adjust the sensitivity of the loss, thereby enhancing the discriminative capacity of the learned representations. Our approach demonstrates robust generalization in in- and out-domain settings through comprehensive experimental evaluations conducted on five distinct benchmark histopathological datasets belonging to three cancer types. The results obtained on different experimental settings show that the proposed approach outmatched the state-of-the-art approaches in cross-domain and cross-disease settings.
组织病理学图像具有高分辨率和复杂的细胞结构,这给自动分析带来了独特的挑战。传统的基于监督学习的方法通常依赖大量有标签的数据集,这既耗费人力又成本高昂。在学习表示方面,自监督学习技术已显示出能直接从原始图像数据中取得有前景的成果,而无需人工标注。在本文中,我们提出一种新颖的基于边际感知的优化对比学习方法,以使用自监督方法增强从组织病理学图像中进行的表示学习。所提出的方法采用基于边际的策略优化对比学习,以在强制语义相似性阈值的同时有效地学习判别性表示。在所提出的损失函数中,一个边际用于在嵌入空间中强制正样本对之间具有一定程度的相似性,并且引入一个缩放因子来调整损失的敏感性,从而增强所学习表示的判别能力。通过对属于三种癌症类型的五个不同基准组织病理学数据集进行全面的实验评估,我们的方法在域内和域外设置中都展示了强大的泛化能力。在不同实验设置下获得的结果表明,所提出的方法在跨域和跨疾病设置中优于现有方法。