Suppr超能文献

利用动态图优化的全球导航卫星系统监测增强时空滑坡位移预测

Enhanced Spatiotemporal Landslide Displacement Prediction Using Dynamic Graph-Optimized GNSS Monitoring.

作者信息

Li Jiangfeng, Qin Jiahao, Kang Kaimin, Liang Mingzhi, Liu Kunpeng, Ding Xiaohua

机构信息

School of Computer Science and Technology/School of Artificial Intelligence, China University of Mining and Technology, Xuzhou 221008, China.

Xinjiang Jiangna Mining Co., Ltd., Hami 839300, China.

出版信息

Sensors (Basel). 2025 Aug 1;25(15):4754. doi: 10.3390/s25154754.

Abstract

Landslide displacement prediction is crucial for disaster mitigation, yet traditional methods often fail to capture the complex, non-stationary spatiotemporal dynamics of slope evolution. This study introduces an enhanced prediction framework that integrates multi-scale signal processing with dynamic, geology-aware graph modeling. The proposed methodology first employs the Maximum Overlap Discrete Wavelet Transform (MODWT) to denoise raw Global Navigation Satellite System (GNSS)-monitored displacement time series data, enhancing the underlying deformation features. Subsequently, a geology-aware graph is constructed, using the temporal correlation of displacement series as a practical proxy for physical relatedness between monitoring nodes. The framework's core innovation lies in a dynamic graph optimization model with low-rank constraints, which adaptively refines the graph topology to reflect time-varying inter-sensor dependencies driven by factors like mining activities. Experiments conducted on a real-world dataset from an active open-pit mine demonstrate the framework's superior performance. The DCRNN-proposed model achieved the highest accuracy among eight competing models, recording a Root Mean Square Error (RMSE) of 2.773 mm in the Vertical direction, a 39.1% reduction compared to its baseline. This study validates that the proposed dynamic graph optimization approach provides a robust and significantly more accurate solution for landslide prediction in complex, real-world engineering environments.

摘要

滑坡位移预测对于减灾至关重要,但传统方法往往无法捕捉斜坡演化复杂的、非平稳的时空动态。本研究引入了一个增强预测框架,该框架将多尺度信号处理与动态的、地质感知的图建模相结合。所提出的方法首先采用最大重叠离散小波变换(MODWT)对原始全球导航卫星系统(GNSS)监测的位移时间序列数据进行去噪,增强潜在的变形特征。随后,构建一个地质感知图,将位移序列的时间相关性用作监测节点之间物理相关性的实际代理。该框架的核心创新在于具有低秩约束的动态图优化模型,该模型可自适应地优化图拓扑,以反映由采矿活动等因素驱动的传感器间随时间变化的依赖性。在一个活跃露天矿的真实数据集上进行的实验证明了该框架的卓越性能。所提出的DCRNN模型在八个竞争模型中取得了最高精度,在垂直方向上的均方根误差(RMSE)为2.773毫米,与其基线相比降低了39.1%。本研究验证了所提出的动态图优化方法为复杂的现实世界工程环境中的滑坡预测提供了一个强大且显著更准确的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec55/12349391/fc5505c64c54/sensors-25-04754-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验