Yu Jinchi, Zhou Yu, Sun Mingchen, Wang Dadong
School of Mathematics and Computer Science, Jilin Normal University, Siping 136000, China.
School of Computer Science and Technology, Jilin University, Changchun 130012, China.
Sensors (Basel). 2025 Aug 1;25(15):4751. doi: 10.3390/s25154751.
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a novel three-module architecture for image denoising, comprising a generator, a dual-path-UNet-based denoiser, and a discriminator. The generator creates synthetic noise patterns to augment training data, while the dual-path-UNet denoiser uses multiple receptive field modules to preserve fine details and dense feature fusion to maintain global structural integrity. The discriminator provides adversarial feedback to enhance denoising performance. This dual-path adversarial training mechanism addresses the limitations of traditional methods by simultaneously capturing both local details and global structures. Experiments on the SIDD, DND, and PolyU datasets demonstrate superior performance. We compare our architecture with the latest state-of-the-art GAN variants through comprehensive qualitative and quantitative evaluations. These results confirm the effectiveness of noise removal with minimal loss of critical image details. The proposed architecture enhances image denoising capabilities in complex noise scenarios, providing a robust solution for applications that require high image fidelity. By enhancing adaptability to various types of noise while maintaining structural integrity, this method provides a versatile tool for image processing tasks that require preserving detail.
数字图像质量对于医学成像、卫星遥感和视频监控等应用中的可靠分析至关重要。然而,传统的去噪方法难以在去除噪声与保留细节之间取得平衡,并且缺乏对各种类型噪声的适应性。我们提出了一种用于图像去噪的新颖的三模块架构,包括一个生成器、一个基于双路径UNet的去噪器和一个判别器。生成器创建合成噪声模式以增强训练数据,而双路径UNet去噪器使用多个感受野模块来保留精细细节,并通过密集特征融合来维持全局结构完整性。判别器提供对抗性反馈以增强去噪性能。这种双路径对抗训练机制通过同时捕捉局部细节和全局结构来解决传统方法的局限性。在SIDD、DND和PolyU数据集上的实验证明了其卓越的性能。我们通过全面的定性和定量评估将我们的架构与最新的最先进GAN变体进行比较。这些结果证实了在关键图像细节损失最小的情况下进行噪声去除的有效性。所提出的架构增强了在复杂噪声场景中的图像去噪能力,为需要高图像保真度的应用提供了一个强大的解决方案。通过在保持结构完整性的同时增强对各种类型噪声的适应性,该方法为需要保留细节的图像处理任务提供了一个通用工具。