文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于自动情绪调节的多模态传感大语言模型:当前技术、机遇与挑战综述

Multimodal Sensing-Enabled Large Language Models for Automated Emotional Regulation: A Review of Current Technologies, Opportunities, and Challenges.

作者信息

Yu Liangyue, Ge Yao, Ansari Shuja, Imran Muhammad, Ahmad Wasim

机构信息

James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.

出版信息

Sensors (Basel). 2025 Aug 1;25(15):4763. doi: 10.3390/s25154763.


DOI:10.3390/s25154763
PMID:40807928
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349093/
Abstract

Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal sensing technologies and large language models (LLMs) for the development of Automated Emotional Regulation (AER) systems. The review draws upon a comprehensive analysis of the existing literature, encompassing research papers, technical reports, and relevant theoretical frameworks. Key findings indicate that multimodal sensing offers the potential for rich, contextualized data pertaining to emotional states, while LLMs provide improved capabilities for interpreting these inputs and generating nuanced, empathetic, and actionable regulatory responses. The integration of these technologies, including physiological sensors, behavioral tracking, and advanced LLM architectures, presents the improvement of application, moving AER beyond simpler, rule-based systems towards more adaptive, context-aware, and human-like interventions. Opportunities for personalized interventions, real-time support, and novel applications in mental healthcare and other domains are considerable. However, these prospects are counterbalanced by significant challenges and limitations. In summary, this review synthesizes current technological advancements, identifies substantial opportunities for innovation and application, and critically analyzes the multifaceted technical, ethical, and practical challenges inherent in this domain. It also concludes that while the integration of multimodal sensing and LLMs holds significant potential for AER, the field is nascent and requires concerted research efforts to realize its full capacity to enhance human well-being.

摘要

情绪调节对心理健康至关重要。然而,许多人忽视自身的情绪调节,或因心理咨询成本高昂而望而却步,这给广泛提供有效的支持带来了重大挑战。本综述系统地研究了多模态传感技术与大语言模型(LLMs)在自动化情绪调节(AER)系统开发中的融合情况。该综述基于对现有文献的全面分析,包括研究论文、技术报告及相关理论框架。主要研究结果表明,多模态传感有潜力提供与情绪状态相关的丰富、情境化数据,而大语言模型则具备更强的能力来解读这些输入,并生成细致入微、富有同理心且可付诸行动的调节反应。这些技术的整合,包括生理传感器、行为追踪和先进的大语言模型架构,推动了应用的改进,使AER从更简单的基于规则的系统迈向更具适应性、情境感知和类人化的干预措施。在心理保健和其他领域进行个性化干预、实时支持及开展新应用的机会相当可观。然而,这些前景也受到重大挑战和限制的制衡。总之,本综述综合了当前的技术进步,确定了大量创新和应用机会,并批判性地分析了该领域内在的多方面技术、伦理和实际挑战。它还得出结论,虽然多模态传感与大语言模型的整合对AER具有巨大潜力,但该领域尚处于起步阶段,需要共同的研究努力来充分发挥其增强人类福祉的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd45/12349093/421f9128acfe/sensors-25-04763-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd45/12349093/db30771e4d04/sensors-25-04763-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd45/12349093/64c7fb0ec39e/sensors-25-04763-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd45/12349093/4233a9e85dbe/sensors-25-04763-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd45/12349093/421f9128acfe/sensors-25-04763-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd45/12349093/db30771e4d04/sensors-25-04763-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd45/12349093/64c7fb0ec39e/sensors-25-04763-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd45/12349093/4233a9e85dbe/sensors-25-04763-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd45/12349093/421f9128acfe/sensors-25-04763-g004.jpg

相似文献

[1]
Multimodal Sensing-Enabled Large Language Models for Automated Emotional Regulation: A Review of Current Technologies, Opportunities, and Challenges.

Sensors (Basel). 2025-8-1

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Stench of Errors or the Shine of Potential: The Challenge of (Ir)Responsible Use of ChatGPT in Speech-Language Pathology.

Int J Lang Commun Disord. 2025

[4]
Large Language Models and Empathy: Systematic Review.

J Med Internet Res. 2024-12-11

[5]
Leveraging Retrieval-Augmented Large Language Models for Dietary Recommendations With Traditional Chinese Medicine's Medicine Food Homology: Algorithm Development and Validation.

JMIR Med Inform. 2025-8-21

[6]
Implementing Large Language Models in Health Care: Clinician-Focused Review With Interactive Guideline.

J Med Internet Res. 2025-7-11

[7]
Using Generative Artificial Intelligence in Health Economics and Outcomes Research: A Primer on Techniques and Breakthroughs.

Pharmacoecon Open. 2025-4-29

[8]
Use of Large Language Models to Classify Epidemiological Characteristics in Synthetic and Real-World Social Media Posts About Conjunctivitis Outbreaks: Infodemiology Study.

J Med Internet Res. 2025-7-2

[9]
Wood Waste Valorization and Classification Approaches: A systematic review.

Open Res Eur. 2025-5-6

[10]
Using Large Language Models to Enhance Exercise Recommendations and Physical Activity in Clinical and Healthy Populations: Scoping Review.

JMIR Med Inform. 2025-5-27

本文引用的文献

[1]
Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data.

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024-3

[2]
Large Language Models and Empathy: Systematic Review.

J Med Internet Res. 2024-12-11

[3]
Large Language Models for Mental Health Applications: Systematic Review.

JMIR Ment Health. 2024-10-18

[4]
Testing and Evaluation of Health Care Applications of Large Language Models: A Systematic Review.

JAMA. 2025-1-28

[5]
Empathic Conversational Agent Platform Designs and Their Evaluation in the Context of Mental Health: Systematic Review.

JMIR Ment Health. 2024-9-9

[6]
Comparative Evaluation of LLMs in Clinical Oncology.

NEJM AI. 2024-5

[7]
Exploring the Efficacy of Large Language Models in Summarizing Mental Health Counseling Sessions: Benchmark Study.

JMIR Ment Health. 2024-7-23

[8]
Comorbid physical health burden of serious mental health disorders in 32 European countries.

BMJ Ment Health. 2024-4-5

[9]
Development and application of emotion recognition technology - a systematic literature review.

BMC Psychol. 2024-2-24

[10]
AI-Generated Clinical Summaries Require More Than Accuracy.

JAMA. 2024-2-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索