Mardanshahi Ali, Sreekumar Abhilash, Yang Xin, Barman Swarup Kumar, Chronopoulos Dimitrios
Department of Mechanical Engineering & Mecha(tro)nic System Dynamics (LMSD), KU Leuven, 9000 Gent, Belgium.
Sensors (Basel). 2025 Feb 26;25(5):1424. doi: 10.3390/s25051424.
This systematic review examines the capabilities, challenges, and practical implementations of the most widely utilized and emerging sensing technologies in structural health monitoring (SHM) for infrastructures, addressing a critical research gap. While many existing reviews focus on individual methods, comprehensive cross-method comparisons have been limited due to the highly tailored nature of each technology. We address this by proposing a novel framework comprising five specific evaluation criteria-deployment suitability in SHM, hardware prerequisites, characteristics of the acquired signals, sensitivity metrics, and integration with Digital Twin environments-refined with subcriteria to ensure transparent and meaningful performance assessments. Applying this framework, we analyze both the advantages and constraints of established sensing technologies, including infrared thermography, electrochemical sensing, strain measurement, ultrasonic testing, visual inspection, vibration analysis, and acoustic emission. Our findings highlight critical trade-offs in scalability, environmental sensitivity, and diagnostic accuracy. Recognizing these challenges, we explore next-generation advancements such as self-sensing structures, unmanned aerial vehicle deployment, IoT-enabled data fusion, and enhanced Digital Twin simulations. These innovations aim to overcome existing limitations by enhancing real-time monitoring, data management, and remote accessibility. This review provides actionable insights for researchers and practitioners while identifying future research opportunities to advance scalable and adaptive SHM solutions for large-scale infrastructure.
本系统综述探讨了基础设施结构健康监测(SHM)中最广泛使用和新兴的传感技术的能力、挑战及实际应用,填补了一项关键研究空白。虽然许多现有综述聚焦于个别方法,但由于每种技术的高度定制性,全面的跨方法比较一直有限。我们通过提出一个新颖的框架来解决这一问题,该框架包括五个具体的评估标准——SHM中的部署适用性、硬件先决条件、采集信号的特征、灵敏度指标以及与数字孪生环境的集成,并细化了子标准以确保进行透明且有意义的性能评估。应用此框架,我们分析了既定传感技术的优势和局限性,包括红外热成像、电化学传感、应变测量、超声检测、目视检查、振动分析和声发射。我们的研究结果突出了在可扩展性、环境敏感性和诊断准确性方面的关键权衡。认识到这些挑战,我们探索了下一代进展,如自传感结构、无人机部署、物联网支持的数据融合以及增强的数字孪生模拟。这些创新旨在通过加强实时监测、数据管理和远程可及性来克服现有局限性。本综述为研究人员和从业者提供了可操作的见解,同时确定了未来的研究机会,以推动针对大规模基础设施的可扩展和自适应SHM解决方案的发展。