Suppr超能文献

基于对称点模式和卷积神经网络的锂电池模块故障诊断

Fault Diagnosis of Lithium Battery Modules via Symmetrized Dot Pattern and Convolutional Neural Networks.

作者信息

Wang Meng-Hui, Hong Jing-Xuan, Lu Shiue-Der

机构信息

Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.

出版信息

Sensors (Basel). 2024 Dec 27;25(1):94. doi: 10.3390/s25010094.

Abstract

This paper proposes a hybrid algorithm combining the symmetrized dot pattern (SDP) method and a convolutional neural network (CNN) for fault detection in lithium battery modules. The study focuses on four fault types: overcharge, over-discharge, aging, and leakage caused by manual perforation. An 80.5 kHz high-frequency square wave signal is input into the battery module and recorded using a high-speed data acquisition card. The signal is processed by the SDP method to generate characteristic images for fault diagnosis. Finally, a deep learning algorithm is used to evaluate the state of the lithium battery. A total of 3000 samples were collected, with 400 samples used for training and 200 for testing for each fault type, achieving an overall identification accuracy of 99.9%, demonstrating the effectiveness of the proposed method.

摘要

本文提出了一种将对称点模式(SDP)方法与卷积神经网络(CNN)相结合的混合算法,用于锂电池模块的故障检测。该研究聚焦于四种故障类型:过充、过放、老化以及人工穿孔导致的漏电。将一个80.5kHz的高频方波信号输入到电池模块中,并使用高速数据采集卡进行记录。该信号通过SDP方法进行处理,以生成用于故障诊断的特征图像。最后,使用深度学习算法评估锂电池的状态。总共收集了3000个样本,每种故障类型有400个样本用于训练,200个样本用于测试,总体识别准确率达到99.9%,证明了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac44/11723052/41a40f46340a/sensors-25-00094-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验