Suppr超能文献

通过数学建模和乌鸦搜索算法实现的优化智能定位

Optimized Intelligent Localization Through Mathematical Modeling and Crow Search Algorithms.

作者信息

Badawy Tamer Ramadan, Ziedan Nesreen I

机构信息

Communications and Computer Engineering Department, Misr Higher Institute for Engineering and Technology, Mansoura 7651012, Egypt.

Computer and Systems Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 7120001, Egypt.

出版信息

Sensors (Basel). 2025 Aug 5;25(15):4804. doi: 10.3390/s25154804.

Abstract

Localization has emerged as a critical problem over the past decades, with diverse techniques developed to address robot and mobile localization challenges across varied domains. However, existing localization methods still fall short of achieving the precision needed for certain high-demand applications. The proposed algorithm is designed to enhance localization accuracy by integrating mathematical modeling with the Crow Search Algorithm (CSA). The objective is to identify the most probable position within a designated search space. Anchored by a network of fixed points, the search area is initially defined. A mathematical approach is then applied to reduce this area by calculating the intersections between circles centered at each anchor point. Within this reduced area, an array of candidate points are selected, and their centroid is computed to serve as an initial estimate. The modified CSA iteratively improves upon this estimate by emulating the natural behavior of crows, updating its variables to converge on the optimal position. Experimental evaluations, conducted on both real and simulated datasets, demonstrate that the proposed algorithm leads to a better localization accuracy than existing methods. The proposed methodology achieves a significant accuracy improvement with an accuracy of 98%. These results confirm the effectiveness of our approach for applications that require high precision with minimal infrastructure and low computational complexity.

摘要

在过去几十年中,定位已成为一个关键问题,人们开发了各种技术来应对不同领域中机器人和移动设备的定位挑战。然而,现有的定位方法仍无法达到某些高要求应用所需的精度。所提出的算法旨在通过将数学建模与乌鸦搜索算法(CSA)相结合来提高定位精度。目标是在指定的搜索空间内确定最可能的位置。以固定点网络为锚点,首先定义搜索区域。然后应用一种数学方法,通过计算以每个锚点为圆心的圆之间的交点来缩小该区域。在这个缩小的区域内,选择一系列候选点,并计算它们的质心作为初始估计。改进后的CSA通过模拟乌鸦的自然行为迭代地改进这个估计,更新其变量以收敛到最优位置。在真实数据集和模拟数据集上进行的实验评估表明,所提出的算法比现有方法具有更高的定位精度。所提出的方法实现了显著的精度提升,精度达到了98%。这些结果证实了我们的方法对于那些需要高精度、最少基础设施和低计算复杂度的应用的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ee/12349108/7f19d301680c/sensors-25-04804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验