Tosi Davide, Pazzi Roberto
Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, 21100 Varese, Italy.
Sensors (Basel). 2025 Aug 6;25(15):4841. doi: 10.3390/s25154841.
Modern cloud-based Internet of Things (IoT) infrastructures face increasingly sophisticated and diverse cyber threats that challenge traditional detection systems in terms of scalability, adaptability, and explainability. In this paper, we present (H-DIR), a hybrid entropy-based framework designed to detect and mitigate anomalies in large-scale heterogeneous networks. The framework combines Shannon entropy analysis with Associated Random Neural Networks (ARNNs) and integrates semantic reasoning through RDF/SPARQL, all embedded within a distributed Apache Spark 3.5.0 pipeline. We validate (H-DIR) across three critical attack scenarios-SYN Flood (TCP), DAO-DIO (RPL), and NTP amplification (UDP)-using real-world datasets. The system achieves a mean detection latency of 247 ms and an AUC of 0.978 for SYN floods. For DAO-DIO manipulations, it increases the packet delivery ratio from 81.2% to 96.4% ( < 0.01), and for NTP amplification, it reduces the peak load by 88%. The framework achieves vertical scalability across millions of endpoints and horizontal scalability on datasets exceeding 10 TB. All code, datasets, and Docker images are provided to ensure full reproducibility. By coupling adaptive neural inference with semantic explainability, (H-DIR) offers a transparent and scalable solution for cloud-IoT cybersecurity, establishing a robust baseline for future developments in edge-aware and zero-day threat detection.
现代基于云的物联网(IoT)基础设施面临着日益复杂多样的网络威胁,这些威胁在可扩展性、适应性和可解释性方面对传统检测系统构成了挑战。在本文中,我们提出了(H-DIR),这是一个基于混合熵的框架,旨在检测和缓解大规模异构网络中的异常情况。该框架将香农熵分析与关联随机神经网络(ARNN)相结合,并通过RDF/SPARQL集成语义推理,所有这些都嵌入在分布式Apache Spark 3.5.0管道中。我们使用真实世界的数据集在三种关键攻击场景——SYN泛洪(TCP)、DAO-DIO(RPL)和NTP放大(UDP)——中对(H-DIR)进行了验证。对于SYN泛洪攻击,该系统的平均检测延迟为247毫秒,AUC为0.978。对于DAO-DIO操纵,它将数据包交付率从81.2%提高到96.4%(<0.01),对于NTP放大攻击,它将峰值负载降低了88%。该框架在数百万个端点上实现了垂直可扩展性,在超过10 TB的数据集上实现了水平可扩展性。所有代码、数据集和Docker镜像均已提供,以确保完全可重复性。通过将自适应神经推理与语义可解释性相结合,(H-DIR)为云物联网网络安全提供了一个透明且可扩展的解决方案,为边缘感知和零日威胁检测的未来发展建立了一个强大的基线。