Verde Maria Teresa, Fonisto Mattia, Amato Flora, Liccardo Annalisa, Matera Roberta, Neglia Gianluca, Bonavolontà Francesco
Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy.
Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy.
Sensors (Basel). 2025 Aug 7;25(15):4865. doi: 10.3390/s25154865.
Mastitis is a significant challenge in the buffalo industry, affecting both milk production and animal health and resulting in economic losses. This study presents the first fully automated AI-driven thermal imaging system integrated with robotic milking, specifically developed for the real-time, non-invasive monitoring of udder health in Italian Mediterranean buffalo. Unlike traditional approaches, the system leverages the synchronized acquisition of thermal images during milking and compensates for environmental variables through a calibrated weather station. A transformer-based neural network (SegFormer) segments the udder area, enabling the extraction of maximum udder skin surface temperature (USST), which is significantly correlated with somatic cell count (SCC). Initial trials demonstrate the feasibility of this approach in operational farm environments, paving the way for scalable, precision diagnostics of subclinical mastitis. This work represents a critical step toward intelligent, automated systems for early detection and intervention, improving animal welfare and reducing antibiotic use.
乳腺炎是水牛养殖业面临的一项重大挑战,它会影响牛奶产量和动物健康,并造成经济损失。本研究展示了首个与机器人挤奶相结合的全自动人工智能驱动热成像系统,该系统是专门为实时、非侵入性监测意大利地中海地区水牛的乳房健康而开发的。与传统方法不同,该系统利用挤奶过程中同步采集的热图像,并通过校准气象站来补偿环境变量。基于Transformer的神经网络(SegFormer)对乳房区域进行分割,能够提取最大乳房皮肤表面温度(USST),该温度与体细胞计数(SCC)显著相关。初步试验证明了这种方法在实际农场环境中的可行性,为亚临床乳腺炎的可扩展、精准诊断铺平了道路。这项工作是迈向智能、自动化早期检测和干预系统的关键一步,有助于提高动物福利并减少抗生素使用。