Tedeschi Luis Orlindo, Lopez Pablo Guarnido, Menendez Iii Hector M, Seo Seongwon
Texas A&M University, College Station, United States.
South Dakota State University, Rapid City, United States.
Anim Biosci. 2025 Aug 12. doi: 10.5713/ab.25.0289.
Precision Livestock Farming (PLF) has evolved dramatically from basic monitoring systems to sophisticated artificial intelligence(AI)-driven decision support systems that enhance livestock management efficiency, sustainability, and animal welfare. This review examines the technological evolution of PLF since 2017, highlighting significant advancements in sensing technologies, computer vision, and artificial intelligence. Non-invasive technologies, including RGB-D cameras, 3D imaging systems, and IoT-enabled platforms, now capture detailed biometric and behavioral data in real time, while AI algorithms enable early disease detection, optimize feeding strategies, and improve reproductive management. Integrating these technologies with mechanistic models has created hybrid intelligent frameworks that address longstanding challenges in precision nutrition modeling. Future PLF development will likely focus on integrating large language models, adopting federated learning approaches to address data privacy concerns, and democratizing technologies for small-scale producers. Despite technological progress, challenges remain regarding data standardization, connectivity in rural environments, high implementation costs, and ethical considerations around increased animal monitoring. By fostering interdisciplinary collaboration among animal scientists, engineers, computer scientists, and social scientists, PLF can continue to drive sustainable and efficient practices in livestock production while ensuring that technologies complement rather than replace traditional husbandry knowledge.
精准畜牧养殖(PLF)已从基本监测系统大幅发展为复杂的人工智能(AI)驱动的决策支持系统,可提高畜牧管理效率、可持续性和动物福利。本综述考察了自2017年以来PLF的技术发展,重点介绍了传感技术、计算机视觉和人工智能方面的重大进展。包括RGB-D相机、3D成像系统和物联网平台在内的非侵入性技术,现在能够实时获取详细的生物特征和行为数据,而AI算法则能够实现疾病早期检测、优化喂养策略并改善繁殖管理。将这些技术与机理模型相结合,创建了混合智能框架,解决了精准营养建模中长期存在的挑战。未来PLF的发展可能会集中在整合大语言模型、采用联邦学习方法解决数据隐私问题,以及使技术面向小规模生产者普及。尽管取得了技术进步,但在数据标准化、农村环境中的连通性、高实施成本以及围绕加强动物监测的伦理考量等方面仍然存在挑战。通过促进动物科学家、工程师、计算机科学家和社会科学家之间的跨学科合作,PLF可以继续推动畜牧生产中的可持续和高效实践,同时确保技术补充而非取代传统养殖知识。