Reveles-Espinoza Alicia, Villela Ulises, Hernandez-Martinez Edgar, Chairez Isaac, Juárez-Méndez Sergio, Casanova-Moreno J, Eguía-Aguilar Ma Del Pilar, Figueroa-Yáñez Luis, Vallejo-Cardona Adriana, Salgado Iván
Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Gustavo A. Madero, 07700, Mexico City, Mexico.
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Gustavo A. Madero, 07360, Mexico City, Mexico.
Comput Struct Biotechnol J. 2025 Jul 24;27:3481-3491. doi: 10.1016/j.csbj.2025.07.033. eCollection 2025.
The study introduces a structured methodology for the identification of molecular targets that accurately classify medulloblastoma subgroups: WNT, SHH, Group 3 (G3) and Group 4 (G4). An artificial neural network (ANN) model trained on microarray gene expression data determined minimal gene combinations for each subgroup. The classification achieved an average accuracy of 96%, demonstrating the effectiveness of the proposed approach. Feature selection using the Kruskal-Wallis and tests revealed statistically relevant genes contributing to subgroup discrimination. Reverse transcription followed by digital Polymerase Chain Reaction (dPCR) measured the expression levels of a subset of these genes in tumor samples, validating the computational predictions with experimental evidence. The integration of machine learning and molecular quantification provides a reproducible framework for medulloblastoma subgroup classification supported by both statistical and experimental consistency.
该研究引入了一种结构化方法来识别分子靶点,该方法能准确地将髓母细胞瘤亚组分类为:WNT、SHH、3组(G3)和4组(G4)。在微阵列基因表达数据上训练的人工神经网络(ANN)模型确定了每个亚组的最小基因组合。该分类的平均准确率达到了96%,证明了所提出方法的有效性。使用Kruskal-Wallis检验和[此处原文缺失具体检验名称]进行特征选择,揭示了有助于亚组区分的具有统计学意义的相关基因。逆转录后进行数字聚合酶链反应(dPCR)测量肿瘤样本中这些基因子集的表达水平,用实验证据验证了计算预测结果。机器学习与分子定量的整合为髓母细胞瘤亚组分类提供了一个可重复的框架,该框架得到了统计和实验一致性的支持。
Comput Struct Biotechnol J. 2025-7-24
Comput Methods Programs Biomed. 2025-6-21
Acta Neuropathol Commun. 2013-10-10
Front Hum Neurosci. 2025-7-16
Cochrane Database Syst Rev. 2024-10-14
Iran J Public Health. 2023-11
Acta Biochim Biophys Sin (Shanghai). 2024-1-25
Arthritis Rheumatol. 2024-1
Front Med (Lausanne). 2023-4-4