文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用微阵列基因指纹分析通过机器学习识别髓母细胞瘤亚组的分子靶点。

Machine learning identification of molecular targets for medulloblastoma subgroups using microarray gene fingerprint analysis.

作者信息

Reveles-Espinoza Alicia, Villela Ulises, Hernandez-Martinez Edgar, Chairez Isaac, Juárez-Méndez Sergio, Casanova-Moreno J, Eguía-Aguilar Ma Del Pilar, Figueroa-Yáñez Luis, Vallejo-Cardona Adriana, Salgado Iván

机构信息

Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Gustavo A. Madero, 07700, Mexico City, Mexico.

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Gustavo A. Madero, 07360, Mexico City, Mexico.

出版信息

Comput Struct Biotechnol J. 2025 Jul 24;27:3481-3491. doi: 10.1016/j.csbj.2025.07.033. eCollection 2025.


DOI:10.1016/j.csbj.2025.07.033
PMID:40808800
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12345876/
Abstract

The study introduces a structured methodology for the identification of molecular targets that accurately classify medulloblastoma subgroups: WNT, SHH, Group 3 (G3) and Group 4 (G4). An artificial neural network (ANN) model trained on microarray gene expression data determined minimal gene combinations for each subgroup. The classification achieved an average accuracy of 96%, demonstrating the effectiveness of the proposed approach. Feature selection using the Kruskal-Wallis and tests revealed statistically relevant genes contributing to subgroup discrimination. Reverse transcription followed by digital Polymerase Chain Reaction (dPCR) measured the expression levels of a subset of these genes in tumor samples, validating the computational predictions with experimental evidence. The integration of machine learning and molecular quantification provides a reproducible framework for medulloblastoma subgroup classification supported by both statistical and experimental consistency.

摘要

该研究引入了一种结构化方法来识别分子靶点,该方法能准确地将髓母细胞瘤亚组分类为:WNT、SHH、3组(G3)和4组(G4)。在微阵列基因表达数据上训练的人工神经网络(ANN)模型确定了每个亚组的最小基因组合。该分类的平均准确率达到了96%,证明了所提出方法的有效性。使用Kruskal-Wallis检验和[此处原文缺失具体检验名称]进行特征选择,揭示了有助于亚组区分的具有统计学意义的相关基因。逆转录后进行数字聚合酶链反应(dPCR)测量肿瘤样本中这些基因子集的表达水平,用实验证据验证了计算预测结果。机器学习与分子定量的整合为髓母细胞瘤亚组分类提供了一个可重复的框架,该框架得到了统计和实验一致性的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/201a1bbb1a61/gr009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/edf16a9cbb30/gr001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/f3cb8c2b130c/gr002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/b3a6224c79cd/gr003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/4cca46534a95/gr004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/dc094b92e028/gr005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/b2f804be5523/gr006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/87ff10f69748/gr007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/c1b1ccc333c4/gr008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/201a1bbb1a61/gr009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/edf16a9cbb30/gr001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/f3cb8c2b130c/gr002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/b3a6224c79cd/gr003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/4cca46534a95/gr004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/dc094b92e028/gr005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/b2f804be5523/gr006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/87ff10f69748/gr007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/c1b1ccc333c4/gr008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c1/12345876/201a1bbb1a61/gr009.jpg

相似文献

[1]
Machine learning identification of molecular targets for medulloblastoma subgroups using microarray gene fingerprint analysis.

Comput Struct Biotechnol J. 2025-7-24

[2]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[3]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[4]
A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques.

Sci Rep. 2025-7-2

[5]
Multiparametric MRI-based machine learning system of molecular subgroups and prognosis in medulloblastoma.

Eur Radiol. 2025-1-30

[6]
G-protein coupled receptor expression patterns delineate medulloblastoma subgroups.

Acta Neuropathol Commun. 2013-10-10

[7]
Classification of finger movements through optimal EEG channel and feature selection.

Front Hum Neurosci. 2025-7-16

[8]
Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance.

Acta Radiol. 2023-5

[9]
Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2024-10-14

[10]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

本文引用的文献

[1]
Trichosanthin elicits antitumor activity via MICU3 mediated mitochondria calcium influx.

J Adv Res. 2024-11-4

[2]
Identification of TMEM178 as a Potential Prognostic Biomarker and Therapeutic Target for Breast Cancer.

Iran J Public Health. 2023-11

[3]
ELF4 contributes to esophageal squamous cell carcinoma growth and metastasis by augmenting cancer stemness via FUT9.

Acta Biochim Biophys Sin (Shanghai). 2024-1-25

[4]
Machine learning methods revealed the roles of immune-metabolism related genes in immune infiltration, stemness, and prognosis of neuroblastoma.

Cancer Biomark. 2023

[5]
Tmem178 Negatively Regulates IL-1β Production Through Inhibition of the NLRP3 Inflammasome.

Arthritis Rheumatol. 2024-1

[6]
Identification of DYNLT1 associated with proliferation, relapse, and metastasis in breast cancer.

Front Med (Lausanne). 2023-4-4

[7]
Identification and Validation of a Mitochondria Calcium Uptake-Related Gene Signature for Predicting Prognosis in COAD.

J Cancer. 2023-3-21

[8]
DNA methylation-based patterns for early diagnostic prediction and prognostic evaluation in colorectal cancer patients with high tumor mutation burden.

Front Oncol. 2023-1-13

[9]
Tacedinaline (CI-994), a class I HDAC inhibitor, targets intrinsic tumor growth and leptomeningeal dissemination in MYC-driven medulloblastoma while making them susceptible to anti-CD47-induced macrophage phagocytosis via NF-kB-TGM2 driven tumor inflammation.

J Immunother Cancer. 2023-1

[10]
Identification of Methylation Signatures and Rules for Sarcoma Subtypes by Machine Learning Methods.

Biomed Res Int. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索