Suppr超能文献

基于多参数磁共振成像的髓母细胞瘤分子亚组和预后的机器学习系统

Multiparametric MRI-based machine learning system of molecular subgroups and prognosis in medulloblastoma.

作者信息

Liu Ziyang, Ren Sikang, Zhang Heng, Liao Zhiyi, Liu Zhiming, An Xu, Cheng Jian, Li Chunde, Gong Jian, Niu Haijun, Jing Jing, Li Zixiao, Liu Tao, Tian Yongji

机构信息

Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

出版信息

Eur Radiol. 2025 Jan 30. doi: 10.1007/s00330-025-11385-8.

Abstract

OBJECTIVES

We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.

METHODS

The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost. Finally, a novel risk stratification system to stratify the patients based on the MR Score (Machine learning-based Medulloblastoma Risk Score) was proposed.

RESULTS

A total of 139 MB patients (36 female, average age 7.27 ± 3.62 years) were treated at Beijing Tiantan Hospital. The Bi-ResNet-MB model excelled in molecular subgroup classification, achieving an average AUC of 0.946 (95% CI: 0.899-0.993). For prognostic prediction, our models achieved AUCs of 0.840 (95% CI: 0.792-0.888), 0.949 (95% CI: 0.899-0.999), and 0.960 (95% CI: 0.915-1.000) for OS, and 0.946 (95% CI: 0.905-0.987), 0.932 (95% CI: 0.875-0.989), and 0.964 (95% CI: 0.921-1.000) for PFS at 1, 3, and 5 years. In an independent validation dataset of 108 patients (33 female, average age 7.11 ± 2.92 years), the average AUC of molecular subgroup classification reached 0.894 (95% CI: 0.797-1.000). For PFS prediction at 1, 3, and 5 years, the AUCs were 0.832 (95% CI: 0.724-0.920), 0.875 (95% CI: 0.781-0.967), and 0.907 (95% CI: 0.760-1.000), respectively.

CONCLUSIONS

Based on machine learning and MRI data, models for MB molecular subgroups and prognosis prediction and the novel risk stratification system may significantly benefit patients.

KEY POINTS

Question Medulloblastoma exhibits significant heterogeneity, leading to considerable variations in patient prognosis and there is a lack of effective risk assessment strategies. Findings We have constructed a comprehensive machine learning system that excels in subgrouping diagnosis, prognosis assessment, and risk stratification for medulloblastoma patients preoperatively. Clinical relevance The utilization of non-invasive preoperative diagnosis and assessment is advantageous for clinicians in creating personalized treatment plans, particularly for high-risk patients. Additionally, it lays a foundation for the subsequent implementation of neoadjuvant therapy for medulloblastoma.

摘要

目的

我们旨在利用人工智能准确识别髓母细胞瘤(MB)的分子亚组,预测临床结果,并将基于深度学习的影像特征纳入风险分层。

方法

通过一种名为双残差网络 - 髓母细胞瘤(Bi - ResNet - MB)的新型多参数卷积神经网络(CNN)提取分子亚组的MRI特征。然后,利用MR特征基于XGBoost建立预后模型。最后,提出了一种基于MR评分(基于机器学习的髓母细胞瘤风险评分)对患者进行分层的新型风险分层系统。

结果

北京天坛医院共治疗了139例MB患者(36例女性,平均年龄7.27±3.62岁)。Bi - ResNet - MB模型在分子亚组分类方面表现出色,平均AUC为0.946(95%CI:0.899 - 0.993)。对于预后预测,我们的模型在1年、3年和5年总生存期(OS)的AUC分别为0.840(95%CI:0.792 - 0.888)、0.949(95%CI:0.899 - 0.999)和0.960(95%CI:0.915 - 1.000),在1年、3年和5年无进展生存期(PFS)的AUC分别为0.946(95%CI:0.905 - 0.987)、0.932(95%CI:0.875 - 0.989)和0.964(95%CI:0.921 - 1.000)。在一个包含108例患者(33例女性,平均年龄7.11±2.92岁)的独立验证数据集中,分子亚组分类的平均AUC达到0.894(95%CI:0.797 - 1.000)。对于1年、3年和5年PFS的预测,AUC分别为0.832(95%CI:0.724 - 0.920)、0.875(95%CI:0.781 - 0.967)和0.907(95%CI:0.760 - 1.000)。

结论

基于机器学习和MRI数据,MB分子亚组及预后预测模型和新型风险分层系统可能使患者显著受益。

关键点

问题 髓母细胞瘤表现出显著的异质性,导致患者预后差异很大,且缺乏有效的风险评估策略。发现 我们构建了一个全面的机器学习系统,在术前对髓母细胞瘤患者进行亚组诊断、预后评估和风险分层方面表现出色。临床意义 利用非侵入性的术前诊断和评估有利于临床医生制定个性化治疗方案,特别是对于高危患者。此外,它为随后实施髓母细胞瘤新辅助治疗奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验