Suppr超能文献

线性和非线性多维功能连接方法揭示了脑电图/脑磁图数据中语义处理的相似网络。

Linear and nonlinear multidimensional functional connectivity methods reveal similar networks for semantic processing in EEG/MEG data.

作者信息

Rahimi Setareh, Jackson Rebecca L, Hauk Olaf

机构信息

MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom.

Department of Psychology and York Biomedical Research Institute, University of York, York, United Kingdom.

出版信息

Front Hum Neurosci. 2025 Jul 30;19:1533034. doi: 10.3389/fnhum.2025.1533034. eCollection 2025.

Abstract

INTRODUCTION

Investigating task- and stimulus-dependent connectivity is key to understanding how the interactions between brain regions underpin complex cognitive processes. Yet, the connections identified depend on the assumptions of the connectivity method. To date, methods designed for time-resolved electroencephalography/magnetoencephalography (EEG/MEG) data typically reduce signals in regions to one time course per region. This may fail to identify critical relationships between activation patterns across regions. Time-Lagged Multidimensional Pattern Connectivity (TL-MDPC) is a promising new EEG/MEG functional connectivity method improving previous approaches by assessing multidimensional relationships between patterns of brain activity. However, TL-MDPC remains linear and may therefore miss nonlinear interactions among brain areas.

METHODS

Thus, we introduce Nonlinear TL-MDPC (nTL-MDPC), a novel bivariate functional connectivity method for event-related EEG/MEG applications, and compare its performance to the original linear TL-MDPC. nTL-MDPC describes how well patterns in ROI at a time point can predict patterns of ROI at a time point using artificial neural networks.

RESULTS

Applying this method and its linear counterpart to simulated data demonstrates that both can identify nonlinear dependencies, with nTL-MDPC achieving up to ~0.75 explained variance under optimal conditions (e.g., high SNR), compared to ~0.65 with TL-MDPC. However, with a sufficient number of trials- e.g., a trials-to-vertex ratio ≥10:1 - nTL-MDPC achieves up to 15% higher explained variance than the linear method. Nevertheless, application to a real EEG/MEG dataset demonstrated only subtle increases in nonlinear connectivity strength at longer time lags with no significant differences between the two approaches.

DISCUSSION

Overall, this suggests that linear multidimensional methods may be a reasonable practical choice to approximate brain connectivity, given the additional computational demands of nonlinear methods.

摘要

引言

研究任务和刺激依赖的连通性是理解大脑区域间相互作用如何支撑复杂认知过程的关键。然而,所识别出的连接取决于连通性方法的假设。迄今为止,为时间分辨脑电图/脑磁图(EEG/MEG)数据设计的方法通常将各区域的信号简化为每个区域一个时间进程。这可能无法识别跨区域激活模式之间的关键关系。时间滞后多维模式连通性(TL-MDPC)是一种很有前景的数据设计的方法通常将各区域的信号简化为每个区域一个时间进程。这可能无法识别跨区域激活模式之间的关键关系。时间滞后多维模式连通性(TL-MDPC)是一种很有前景的新EEG/MEG功能连通性方法,通过评估大脑活动模式之间的多维关系改进了先前的方法。然而,TL-MDPC仍然是线性的,因此可能会忽略脑区之间的非线性相互作用。

方法

因此,我们引入了非线性TL-MDPC(nTL-MDPC),一种用于事件相关EEG/MEG应用的新型双变量功能连通性方法,并将其性能与原始线性TL-MDPC进行比较。nTL-MDPC描述了在时间点t1时ROI1中的模式能够使用人工神经网络预测时间点t2时ROI2中的模式的程度。

结果

将此方法及其线性对应方法应用于模拟数据表明,两者都能识别非线性依赖性,在最佳条件下(例如,高信噪比),nTL-MDPC的解释方差高达约0.75,而TL-MDPC约为0.65。然而,在试验次数足够时——例如,试验与顶点比≥10:1——nTL-MDPC的解释方差比线性方法高出多达15%。尽管如此,将其应用于真实的EEG/MEG数据集时,在较长时间滞后下,非线性连通性强度仅略有增加,两种方法之间无显著差异。

讨论

总体而言,这表明鉴于非线性方法的额外计算需求,线性多维方法可能是近似大脑连通性的合理实际选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/831d/12343681/f013705076ed/fnhum-19-1533034-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验