Onwuka Serena, Bravo-Merodio Laura, Gkoutos Georgios V, Acharjee Animesh
Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
Centre for Health Data Research, University of Birmingham, Birmingham, UK.
iScience. 2024 Jun 17;27(7):110298. doi: 10.1016/j.isci.2024.110298. eCollection 2024 Jul 19.
Fecal metabolites effectively discriminate inflammatory bowel disease (IBD) and show differential associations with diet. Metabolomics and AI-based models, including explainable AI (XAI), play crucial roles in understanding IBD. Using datasets from the UK Biobank and the Human Microbiome Project Phase II IBD Multi'omics Database (HMP2 IBDMDB), this study uses multiple machine learning (ML) classifiers and Shapley additive explanations (SHAP)-based XAI to prioritize plasma and fecal metabolites and analyze their diet correlations. Key findings include the identification of discriminative metabolites like glycoprotein acetyl and albumin in plasma, as well as nicotinic acid metabolites andurobilin in feces. Fecal metabolites provided a more robust disease predictor model (AUC [95%]: 0.93 [0.87-0.99]) compared to plasma metabolites (AUC [95%]: 0.74 [0.69-0.79]), with stronger and more group-differential diet-metabolite associations in feces. The study validates known metabolite associations and highlights the impact of IBD on the interplay between gut microbial metabolites and diet.
粪便代谢物能够有效区分炎症性肠病(IBD),并显示出与饮食的不同关联。代谢组学和基于人工智能的模型,包括可解释人工智能(XAI),在理解IBD方面发挥着关键作用。本研究使用来自英国生物银行和人类微生物组计划二期IBD多组学数据库(HMP2 IBDMDB)的数据集,采用多种机器学习(ML)分类器和基于Shapley加性解释(SHAP)的XAI来对血浆和粪便代谢物进行优先级排序,并分析它们与饮食的相关性。主要发现包括在血浆中鉴定出如糖蛋白乙酰化产物和白蛋白等具有鉴别性的代谢物,以及在粪便中鉴定出烟酸代谢物和尿胆素。与血浆代谢物(AUC [95%]:0.74 [0.69 - 0.79])相比,粪便代谢物提供了一个更强健的疾病预测模型(AUC [95%]:0.93 [0.87 - 0.99]),并且在粪便中有更强且更具组间差异的饮食 - 代谢物关联。该研究验证了已知的代谢物关联,并突出了IBD对肠道微生物代谢物与饮食之间相互作用的影响。