一种先进的医疗传感平台,可通过气溶胶喷射3D打印的纳米材料和生物材料,在飞摩尔浓度下数秒内直接检测病毒蛋白。
An Advanced Healthcare Sensing Platform for Direct Detection of Viral Proteins in Seconds at Femtomolar Concentrations via Aerosol Jet 3D-Printed Nano and Biomaterials.
作者信息
Ali Azahar, Zhang George Fei, Hu Chunshan, Yuan Bin, Gao Shou-Jiang, Panat Rahul
机构信息
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA, School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
Cancer Virology Program, UPMC Hillman Cancer Center and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
出版信息
Adv Mater Interfaces. 2024 May 16;11(14). doi: 10.1002/admi.202400005. Epub 2024 Mar 12.
Sensing of viral antigens has become a critical tool in combating infectious diseases. Current sensing techniques have a tradeoff between sensitivity and time of detection; with 10-30 min of detection time at a relatively low sensitivity and 6-12 h of detection at a high (picomolar) sensitivity. In this research, uniquely nanoengineered interfaces are demonstrated on 3D electrodes that enable the detection of spike antigens of SARS-CoV-2 and their variants in seconds at femtomolar concentrations with excellent specificity, thus, overcoming this tradeoff. The 3D electrodes, manufactured using a high-resolution aerosol jet 3D nanoprinter, consist of a microelectrode array of sintered gold nanoparticles coated with graphene and antibodies specific to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike antigens. An impedance-based sensing modality is employed to sense several pseudoviruses of SARS-CoV-2 variants of concern (VOCs). This device is sensitive to most of the pseudoviruses of SARS-CoV-2 VOCs. A high sensitivity of 100 fm, along with a low limit-of-detection of 9.2 fm within a test range of 0.1-1000 pm, and a detection time of 43 s are shown. This work illustrates that effective nano-bioengineering of interfaces can be used to create an ultrafast and ultrasensitive healthcare diagnostic tool for combating emerging infections.
病毒抗原传感已成为对抗传染病的关键工具。当前的传感技术在灵敏度和检测时间之间存在权衡;检测时间为10 - 30分钟时灵敏度相对较低,而在高(皮摩尔)灵敏度下检测时间为6 - 12小时。在本研究中,在三维电极上展示了独特的纳米工程界面,能够在几秒钟内以飞摩尔浓度检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)及其变体的刺突抗原,且具有出色的特异性,从而克服了这种权衡。使用高分辨率气溶胶喷射三维纳米打印机制造的三维电极,由烧结金纳米颗粒的微电极阵列组成,该阵列涂有石墨烯和针对SARS-CoV-2刺突抗原的抗体。采用基于阻抗的传感方式来检测几种关注的SARS-CoV-2变体的假病毒。该设备对大多数SARS-CoV-2变体的假病毒敏感。在0.1 - 1000皮摩尔的测试范围内,显示出100飞摩尔的高灵敏度、9.2飞摩尔的低检测限以及43秒的检测时间。这项工作表明,有效的界面纳米生物工程可用于创建一种超快且超灵敏的医疗诊断工具,以对抗新出现的感染。
相似文献
Cochrane Database Syst Rev. 2024-12-16
JBJS Essent Surg Tech. 2025-8-15
Cochrane Database Syst Rev. 2022-5-6
Cochrane Database Syst Rev. 2022-11-17
Cochrane Database Syst Rev. 2022-5-20
2025-1
Cochrane Database Syst Rev. 2022-7-22
本文引用的文献
Biosensors (Basel). 2022-10-17