Suppr超能文献

半自动和全自动人工智能驱动软件与手动系统在头影测量分析中的比较。

Comparison of semi and fully automated artificial intelligence driven softwares and manual system for cephalometric analysis.

机构信息

Armed Forces Institute of Dentistry Rawalpindi, Rawalpindi, Pakistan.

Armed Forces Institute of Dentistry, National University of Medical Sciences, Rawalpindi, Pakistan.

出版信息

BMC Med Inform Decis Mak. 2024 Sep 27;24(1):271. doi: 10.1186/s12911-024-02664-3.

Abstract

BACKGROUND

Cephalometric analysis has been used as one of the main tools for orthodontic diagnosis and treatment planning. The analysis can be performed manually on acetate tracing sheets, digitally by manual selection of landmarks or by recently introduced Artificial Intelligence (AI)-driven tools or softwares that automatically detect landmarks and analyze them. The use of AI-driven tools is expected to avoid errors and make it less time consuming with effective evaluation and high reproducibility.

OBJECTIVE

To conduct intra- and inter-group comparisons of the accuracy and reliability of cephalometric tracing and evaluation done manually and with AI-driven tools that is WebCeph and CephX softwares.

METHODS

Digital and manual tracing of lateral cephalometric radiographs of 54 patients was done. 18 cephalometric parameters were assessed on each radiograph by 3 methods, manual method and by using semi (WebCeph) and fully automatic softwares (Ceph X). Each parameter was assessed by two investigators using these three methods. SPSS was then used to assess the differences in values of cephalometric variables between investigators, between softwares, between human investigator means and software means. ICC and paired T test were used for intra-group comparisons while ANOVA and post-hoc were used for inter-group comparisons.

RESULTS

Twelve out of eighteen variables had high intra-group correlation and significant ICC p-values, 5 variables had relatively lower values and only one variable (SNO) had significantly low ICC value. Fifteen out of eighteen variables had minimal detection error using fully-automatic method of cephalometric analysis. Only three variables had lowest detection error using semi-automatic method of cephalometric analysis. Inter-group comparison revealed significant difference between three methods for eight variables; Witts, NLA, SNGoGn, Y-Axis, Jaraback, SNO, MMA and McNamara to Point A.

CONCLUSION

There is a lack of significant difference among manual, semiautomatic and fully automatic methods of cephalometric tracing and analysis in terms of the variables measured by these methods. The mean detection errors were the highest for manual analysis and lowest for fully automatic method. Hence the fully automatic AI software has the most reproducible and accurate results.

摘要

背景

头影测量分析已被用作正畸诊断和治疗计划的主要工具之一。该分析可以在醋酸纤维素描图纸上手动进行,通过手动选择标志点进行数字分析,或者通过最近引入的人工智能(AI)驱动工具或软件自动检测标志点并进行分析。使用 AI 驱动工具有望避免错误,并通过有效的评估和高重复性减少耗时。

目的

对头影测量描记和评估的手动和 AI 驱动工具(即 WebCeph 和 CephX 软件)的准确性和可靠性进行组内和组间比较。

方法

对 54 名患者的侧位头颅侧位片进行数字化和手动描记。使用三种方法(手动方法和使用半自动软件(WebCeph)和全自动软件(CephX))对每张 X 光片评估 18 个头影测量参数。两位研究人员使用这三种方法评估每个参数。然后使用 SPSS 评估调查员之间、软件之间、调查员平均值和软件平均值之间的头影测量变量值的差异。ICC 和配对 T 检验用于组内比较,而 ANOVA 和事后检验用于组间比较。

结果

18 个变量中有 12 个具有高组内相关性和显著的 ICC p 值,5 个变量具有相对较低的值,只有 1 个变量(SNO)具有显著低的 ICC 值。18 个头影测量分析的变量中,有 15 个变量使用全自动方法具有最小的检测误差。只有 3 个变量使用半自动方法具有最低的头影测量分析检测误差。组间比较显示,三种方法在 8 个变量(Witts、NLA、SNGoGn、Y 轴、Jaraback、SNO、MMA 和 McNamara 到 Point A)上存在显著差异。

结论

在测量这些方法的变量方面,手动、半自动和全自动头影测量描记和分析方法之间没有显著差异。手动分析的平均检测误差最高,全自动方法的检测误差最低。因此,全自动 AI 软件具有最具可重复性和准确性的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf9/11428328/9d251dd27f1c/12911_2024_2664_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验