Jin Zehao, Pang Yuting, Huang Ziyang, Liu Jialin, Zhan Xiaoyi, Wang Kangwei
The Affiliated Yueqing Hospital of Wenzhou Medical University, Yueqing, Zhejiang, China.
School of Medicine and Health, Technical University of Munich, Munich, Germany.
Front Public Health. 2025 Jul 30;13:1593346. doi: 10.3389/fpubh.2025.1593346. eCollection 2025.
BACKGROUND: This study aimed to comprehensively evaluate the global burden of temperature-related ischemic heart disease from 1990 to 2021, analyzing the temporal trends and regional disparities stratified by socioeconomic development levels. Furthermore, we identified high-risk populations and mapped the trajectory of disease burden up to 2050 to generate data that will inform the establishment of evidence-based public health interventions and climate adaptation strategies. METHODS: A comprehensive analysis was conducted on data derived from the Global Burden of Disease Study 2021 (GBD 2021) to determine the impact of temperature-related ischemic heart disease burden in 204 countries and territories. Primary outcome measures included absolute mortality counts, disability-adjusted life years (DALYs), and age-standardized mortality rates (ASMRs). In addition, temporal trend analysis was conducted using joinpoint regression to identify significant inflection points and calculate the annual percent change (APC) estimates. The future landscape of changes in mortality up to 2050 was predicted using the Bayesian age-period-cohort (BAPC) modeling approach, while accounting for age-specific, period-specific, and birth cohort effects. Socioeconomic stratification was performed using the Sociodemographic Index (SDI) quintiles to compare and characterize the variations in the disease burden across development levels. Data uncertainty was quantified using Monte Carlo simulation methods, and the results were expressed as point estimates and their corresponding 95% uncertainty intervals (UI) to ensure robust statistical inference. RESULTS: In 2021, high-temperature exposure contributed to 112,389 IHD deaths globally (95% UI: 17,052-256,434), reflecting a 345.0% increase compared to baseline levels in 1990. The corresponding age-standardized mortality rate increased by 1.34 per 10,000, with an estimated annual percentage change (EAPC) of 1.67 (95% CI: 0.61-2.73). The analysis identified marked sex-specific disparities, characterized by a 41.6% (risk ratio: 1.416, 95% CI not provided) higher mortality risk in males relative to females and a male-to-female DALYs ratio of 1.667. In contrast, low non-optimal temperature was associated with 505,298 IHD deaths globally (95% UI: 432,024-619,922), which represented a 64.4% increase in absolute numbers since 1990 (EAPC: 1.09, 95% CI: 0.77-1.40). In contrast, age-standardized mortality rates decreased by 36.9% annually (EAPC: -2.61, 95% CI: -2.73 to -2.48), indicating improved population-level resilience despite the growing absolute burden. Significant socioeconomic disparities were observed, with low-to-middle SDI regions bearing a disproportionate share (75.0%) of the global high non-optimal temperature-related mortality burden. Geographically, North Africa and the Middle East recorded the highest rates (5.97 per 100,000 population), while high-SDI regions demonstrated a sustained annual decline of 6.8% in age-standardized mortality rates linked to low non-optimal temperature. Analysis of the Bayesian modeling projections for 2050 revealed divergent trajectories: high non-optimal temperature-related age-standardized death rates and DALYs rates are likely to increase by 2.85 per 100,000 and 66.83 per 100,000, respectively. In contrast, age-standardized mortality rates associated with low non-optimal temperature are anticipated to decrease by 6.08 per 100,000, reflecting continued adaptation and improved healthcare infrastructure. CONCLUSION: Non-optimal temperature exposure exerts differential effects on the global IHD mortality burden. Moreover, disease risks linked to high non-optimal temperatures are exacerbated with anthropogenic climate change, which necessitates the formulation of targeted occupational health interventions and enhanced healthcare infrastructure, particularly in low-resource settings. Conversely, while low non-optimal temperature-related mortality risks exhibited a declining age-standardized rates, the growing absolute burden attributable to population aging and persistent energy inequities underscores the need for continued surveillance and intervention. Finally, the disproportionate effect on socioeconomically disadvantaged regions highlights the urgent need for climate-health equity initiatives.
背景:本研究旨在全面评估1990年至2021年与温度相关的缺血性心脏病的全球负担,分析按社会经济发展水平分层的时间趋势和区域差异。此外,我们确定了高危人群,并绘制了到2050年疾病负担的轨迹,以生成数据,为基于证据的公共卫生干预措施和气候适应策略的制定提供参考。 方法:对来自《2021年全球疾病负担研究》(GBD 2021)的数据进行了全面分析,以确定温度相关缺血性心脏病负担对204个国家和地区的影响。主要结局指标包括绝对死亡数、伤残调整生命年(DALYs)和年龄标准化死亡率(ASMRs)。此外,使用Joinpoint回归进行时间趋势分析,以确定显著的拐点并计算年度百分比变化(APC)估计值。使用贝叶斯年龄-时期-队列(BAPC)建模方法预测了到2050年死亡率变化的未来情况,同时考虑了特定年龄、特定时期和出生队列效应。使用社会人口指数(SDI)五分位数进行社会经济分层,以比较和描述不同发展水平上疾病负担的差异。使用蒙特卡洛模拟方法对数据不确定性进行量化,结果以点估计值及其相应的95%不确定性区间(UI)表示,以确保稳健的统计推断。 结果:2021年,高温暴露导致全球112,389例缺血性心脏病死亡(95% UI:17,052 - 256,434),与1990年的基线水平相比增加了345.0%。相应的年龄标准化死亡率每10,000人增加了1.34,估计年度百分比变化(EAPC)为1.67(95% CI:0.61 - 2.73)。分析发现了明显的性别差异,男性的死亡风险比女性高41.6%(风险比:1.416,未提供95% CI),男性与女性的DALYs比率为1.667。相比之下,低温暴露导致全球505,298例缺血性心脏病死亡(95% UI:432,024 - 619,922),自1990年以来绝对数量增加了64.4%(EAPC:1.09,95% CI:0.77 - 1.40)。相比之下,年龄标准化死亡率每年下降36.9%(EAPC: - 2.61,95% CI: - 2.73至 - 2.48),这表明尽管绝对负担不断增加,但人群层面的适应能力有所提高。观察到显著的社会经济差异,低至中等SDI地区承担了全球与非最佳高温相关的死亡负担的不成比例份额(75.0%)。在地理上,北非和中东的发病率最高(每10万人5.97例),而高SDI地区与低温相关的年龄标准化死亡率持续每年下降6.8%。对2050年的贝叶斯建模预测分析显示出不同的轨迹:与非最佳高温相关的年龄标准化死亡率和DALYs率可能分别每10万人增加2.85例和66.83例。相比之下,与低温相关的年龄标准化死亡率预计将每10万人下降6.08例,这反映了持续的适应和改善的医疗基础设施。 结论:非最佳温度暴露对全球缺血性心脏病死亡负担产生不同影响。此外,与非最佳高温相关的疾病风险因人为气候变化而加剧,这需要制定有针对性的职业健康干预措施并加强医疗基础设施,特别是在资源匮乏地区。相反,虽然与低温相关的死亡率风险年龄标准化率呈下降趋势,但由于人口老龄化和持续的能源不平等导致的绝对负担不断增加,凸显了持续监测和干预的必要性。最后,对社会经济弱势地区的不成比例影响凸显了气候-健康公平倡议的迫切需求。
J Stroke Cerebrovasc Dis. 2025-8-6
Front Public Health. 2025-7-29
BMC Musculoskelet Disord. 2025-7-1
Lancet Reg Health West Pac. 2022-6-16
Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2022-4