Suppr超能文献

曲霉来源的β-葡聚糖纳米颗粒:一种管理和促进番茄植株生长的双重策略。

Aspergillus-derived β-glucan nanoparticles: a dual strategy for management and tomato plant growth enhancement.

作者信息

Ramalingam Parthasarathy, Appu Manikandan

机构信息

Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.

Department of Biotechnology, RVS Agricultural College, Thanjavur, Tamil Nadu, India.

出版信息

Front Plant Sci. 2025 Jul 30;16:1611582. doi: 10.3389/fpls.2025.1611582. eCollection 2025.

Abstract

INTRODUCTION

A soilborne Ascomycete, , is the causative agent of wilt disease, posing a significant threat to tomato plants and severely impacting global tomato production. Chemical fungicides are the primary strategy for controlling it. Employing fungicides arbitrarily and in huge dosages can pollute the environment and harm field workers and customers.

METHODS

To combat tomato wilt, we synthesized β-glucan (isolated from the marine algal associate ) nanoparticles (β-glu-n) and evaluated their efficacy in promoting plant growth and suppressing .

RESULTS AND DISCUSSION

The synthesized β-glu-n was confirmed using NMR and IR spectroscopy. The spherical shape with a smooth surface and average size of 35 ± 6.0 nm was observed by TEM. The hydrostatic zeta potential was -38.40 mV, indicating colloidal stability. The crystalline structure of the β-glu-n was confirmed by the XRD spectrum. Furthermore, a significant seed germination and growth profile, including higher shoot and root length and lateral root, was observed in the β-glu-n-treated tomato seeds count than in the mycelial glucan (m-β-glu) and control group under glasshouse conditions. Moreover, novel protein polypeptides were derived from β-glu-n-treated plants, indicating the increased photosynthetic rate. β-glu-n inhibited in a disc diffusion test and reduced wilt symptoms in under detached leaf assay. These results suggest that β-glucan nanoparticles can promote plant growth and prevent tomato wilt disease.

摘要

引言

一种土传子囊菌是枯萎病的病原体,对番茄植株构成重大威胁,并严重影响全球番茄产量。化学杀菌剂是控制该病的主要策略。随意大量使用杀菌剂会污染环境,危害田间工人和消费者。

方法

为防治番茄枯萎病,我们合成了β-葡聚糖(从海洋藻类共生体中分离得到)纳米颗粒(β-葡聚糖-n),并评估了它们在促进植物生长和抑制[病原体名称未给出]方面的功效。

结果与讨论

通过核磁共振和红外光谱对合成的β-葡聚糖-n进行了确认。透射电子显微镜观察到其呈表面光滑的球形,平均尺寸为35±6.0纳米。流体静力ζ电位为-38.40毫伏,表明具有胶体稳定性。X射线衍射光谱证实了β-葡聚糖-n的晶体结构。此外,在温室条件下,与经菌丝体葡聚糖(m-β-葡聚糖)处理的番茄种子和对照组相比,经β-葡聚糖-n处理的番茄种子在种子萌发和生长方面表现显著,包括更高的茎长、根长和侧根数。此外,经β-葡聚糖-n处理的植物产生了新的蛋白质多肽,表明光合速率提高。在滤纸片扩散试验中,β-葡聚糖-n抑制了[病原体名称未给出],在离体叶片试验中减轻了枯萎症状。这些结果表明,β-葡聚糖纳米颗粒可以促进植物生长并预防番茄枯萎病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3b5/12343568/339702c0e762/fpls-16-1611582-g001.jpg

相似文献

1
Aspergillus-derived β-glucan nanoparticles: a dual strategy for management and tomato plant growth enhancement.
Front Plant Sci. 2025 Jul 30;16:1611582. doi: 10.3389/fpls.2025.1611582. eCollection 2025.
3
First specific detection and validation of tomato wilt caused by using a PCR assay.
PeerJ. 2023 Nov 29;11:e16473. doi: 10.7717/peerj.16473. eCollection 2023.
5
A novel key virulence factor, FoSSP71, inhibits plant immunity and promotes pathogenesis in f. sp. .
Microbiol Spectr. 2025 Mar 25;13(5):e0294024. doi: 10.1128/spectrum.02940-24.
8
First report of causing wilt on in China.
Plant Dis. 2025 Jul 7. doi: 10.1094/PDIS-03-25-0467-PDN.
10
Trifloxystrobin Resistance Mechanisms in f. sp. .
Phytopathology. 2025 Aug;115(8):978-985. doi: 10.1094/PHYTO-07-24-0213-R. Epub 2025 Aug 2.

本文引用的文献

2
Enhancing plant resilience: Nanotech solutions for sustainable agriculture.
Heliyon. 2024 Nov 30;10(23):e40735. doi: 10.1016/j.heliyon.2024.e40735. eCollection 2024 Dec 15.
3
Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants.
J Exp Bot. 2024 Dec 4;75(22):7337-7350. doi: 10.1093/jxb/erae368.
4
Characterization of β-glucan obtained from of caprine mastitis.
Open Vet J. 2024 May;14(5):1269-1280. doi: 10.5455/OVJ.2024.v14.i5.22. Epub 2024 May 31.
5
Cryo-Milled β-Glucan Nanoparticles for Oral Drug Delivery.
Pharmaceutics. 2024 Apr 16;16(4):546. doi: 10.3390/pharmaceutics16040546.
6
Mitigating Global Challenges: Harnessing Green Synthesized Nanomaterials for Sustainable Crop Production Systems.
Glob Chall. 2023 Dec 25;8(1):2300187. doi: 10.1002/gch2.202300187. eCollection 2024 Jan.
7
β-glucan-induced disease resistance in plants: A review.
Int J Biol Macromol. 2023 Dec 31;253(Pt 4):127043. doi: 10.1016/j.ijbiomac.2023.127043. Epub 2023 Sep 22.
8
Deciphering growth abilities of f. sp. under variable temperature, pH and nitrogen.
Front Microbiol. 2023 Aug 3;14:1228442. doi: 10.3389/fmicb.2023.1228442. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验