Suppr超能文献

基于荧光寿命成像的经口机器人手术中手术腔隙残余癌的体内分类

FLIm-Based in Vivo Classification of Residual Cancer in the Surgical Cavity During Transoral Robotic Surgery.

作者信息

Hassan Mohamed A, Weyers Brent, Bec Julien, Qi Jinyi, Gui Dorina, Bewley Arnaud, Abouyared Marianne, Farwell Gregory, Birkeland Andrew, Marcu Laura

机构信息

Department of Biomedical Engineering, University of California, Davis, USA.

Department of Pathology and Laboratory Medicine, University of California, Davis, USA.

出版信息

Med Image Comput Comput Assist Interv. 2023 Oct;14228:587-596. doi: 10.1007/978-3-031-43996-4_56. Epub 2023 Oct 1.

Abstract

Incomplete surgical resection with residual cancer left in the surgical cavity is a potential sequelae of Transoral Robotic Surgery (TORS). To minimize such risk, surgeons rely on intraoperative frozen sections analysis (IFSA) to locate and remove the remaining tumor. This process, may lead to false negatives and is time-consuming. Mesoscopic fluorescence lifetime imaging (FLIm) of tissue fluorophores (i.e., collagen and metabolic co-factors NADH and FAD) emission has demonstrated the potential to demarcate the extent of head and neck cancer in patients undergoing surgical procedures of the oral cavity and the oropharynx. Here, we demonstrate the first label-free FLIm-based classification using a novelty detection model to identify residual cancer in the surgical cavity of the oropharynx. Due to highly imbalanced label representation in the surgical cavity, the model employed solely FLIm data from healthy surgical cavity tissue for training and classified the residual tumors as an anomaly. FLIm data from N = 22 patients undergoing upper aerodigestive oncologic surgery were used to train and validate the classification model using leave-one-patient-out cross-validation. Our approach identified all patients with positive surgical margins (N = 3) confirmed by pathology. Furthermore, the proposed method reported a point-level sensitivity of 0.75 and a specificity of 0.78 across optically interrogated tissue surface for all N = 22 patients. The results indicate that the FLIm-based classification model can identify residual cancer by directly imaging the surgical cavity, potentially enabling intraoperative surgical guidance for TORS.

摘要

手术切除不完全,手术腔内残留癌症是经口机器人手术(TORS)的一个潜在后遗症。为了将这种风险降至最低,外科医生依靠术中冰冻切片分析(IFSA)来定位和切除剩余肿瘤。这个过程可能会导致假阴性结果,而且耗时较长。组织荧光团(即胶原蛋白和代谢辅助因子NADH和FAD)发射的介观荧光寿命成像(FLIm)已显示出在接受口腔和口咽手术的患者中划定头颈癌范围的潜力。在此,我们展示了首个基于无标记FLIm的分类方法,使用新颖性检测模型来识别口咽手术腔内的残留癌症。由于手术腔内标签表示高度不平衡,该模型仅使用来自健康手术腔组织的FLIm数据进行训练,并将残留肿瘤分类为异常。来自N = 22例接受上消化道肿瘤手术患者的FLIm数据用于训练和验证分类模型,采用留一患者交叉验证法。我们的方法识别出了所有经病理证实手术切缘阳性的患者(N = 3)。此外,对于所有N = 22例患者,所提出的方法在光学询问的组织表面上报告的点级灵敏度为0.75,特异性为0.78。结果表明,基于FLIm的分类模型可以通过直接对手术腔成像来识别残留癌症,有可能为TORS提供术中手术指导。

相似文献

本文引用的文献

5
Generalized One-Class Learning Using Pairs of Complementary Classifiers.基于互补分类器对的广义一类学习方法
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6993-7009. doi: 10.1109/TPAMI.2021.3092999. Epub 2022 Sep 14.
10
Parametric Signal Estimation Using the Cumulative Distribution Transform.使用累积分布变换的参数信号估计
IEEE Trans Signal Process. 2020;68:3312-3324. doi: 10.1109/tsp.2020.2997181. Epub 2020 May 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验