IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6993-7009. doi: 10.1109/TPAMI.2021.3092999. Epub 2022 Sep 14.
One-class learning is the classic problem of fitting a model to the data for which annotations are available only for a single class. In this paper, we explore novel objectives for one-class learning, which we collectively refer to as Generalized One-class Discriminative Subspaces (GODS). Our key idea is to learn a pair of complementary classifiers to flexibly bound the one-class data distribution, where the data belongs to the positive half-space of one of the classifiers in the complementary pair and to the negative half-space of the other. To avoid redundancy while allowing non-linearity in the classifier decision surfaces, we propose to design each classifier as an orthonormal frame and seek to learn these frames via jointly optimizing for two conflicting objectives, namely: i) to minimize the distance between the two frames, and ii) to maximize the margin between the frames and the data. The learned orthonormal frames will thus characterize a piecewise linear decision surface that allows for efficient inference, while our objectives seek to bound the data within a minimal volume that maximizes the decision margin, thereby robustly capturing the data distribution. We explore several variants of our formulation under different constraints on the constituent classifiers, including kernelized feature maps. We demonstrate the empirical benefits of our approach via experiments on data from several applications in computer vision, such as anomaly detection in video sequences, human poses, and human activities. We also explore the generality and effectiveness of GODS for non-vision tasks via experiments on several UCI datasets, demonstrating state-of-the-art results.
单类学习是经典的问题,即拟合模型以适应只有一个类别的数据。在本文中,我们探索了单类学习的新目标,我们统称为广义单类判别子空间(GODS)。我们的关键思想是学习一对互补的分类器,以灵活地约束单类数据分布,其中数据属于互补对中的一个分类器的正半空间,属于另一个分类器的负半空间。为了避免冗余,同时允许分类器决策面具有非线性,我们建议将每个分类器设计为一个正交框架,并通过联合优化两个冲突的目标来寻求学习这些框架,即:i)最小化两个框架之间的距离,ii)最大化框架和数据之间的间隔。因此,学习到的正交框架将表征一个分段线性决策面,从而允许进行有效的推断,而我们的目标是在最大化决策间隔的最小体积内约束数据,从而稳健地捕获数据分布。我们在不同的约束条件下探索了我们的公式的几个变体,包括核特征映射。我们通过在计算机视觉中的几个应用程序的数据上进行实验,证明了我们的方法的经验优势,例如视频序列、人体姿势和人体活动中的异常检测。我们还通过在几个 UCI 数据集上进行实验,探索了 GODS 对非视觉任务的通用性和有效性,证明了其是最先进的结果。