Suppr超能文献

单细胞RNA测序揭示了棕榈酰化驱动的肺腺癌细胞异质性和预后生物标志物。

Single-cell RNA sequencing reveals palmitoylation-driven cellular heterogeneity and prognostic biomarkers in lung adenocarcinoma.

作者信息

Huang Taibo, Kou Lijie, Zhang Qianqian, Liu Xueya, Hu Xingang

机构信息

Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.

Department of Geriatrics, Henan Provincial People's Hospital, Zhengzhou, Henan, China.

出版信息

Transl Oncol. 2025 Aug 13;61:102501. doi: 10.1016/j.tranon.2025.102501.

Abstract

BACKGROUND

Lung adenocarcinoma (LUAD) is marked by significant variation within tumor cells and continues to be a major global cause of cancer deaths. Palmitoylation is a dynamic lipid-based modification that occurs after protein synthesis and influences the behavior and lifespan of various cancer-related proteins. However, its role in shaping cellular complexity and predicting outcomes in LUAD patients is not yet fully clarified.

METHODS

We examined single-cell RNA sequencing datasets from LUAD samples to identify distinct malignant cell groups. Palmitoylation-related gene activity was estimated using GSVA and ssGSEA techniques. To further define cellular characteristics, we applied copy number variation mapping, pseudotime progression modeling, transcription factor regulatory scoring, and cell-cell interaction analyses. A 12-gene risk model was developed using marker genes from the cluster (C1) with the most prominent palmitoylation pattern. This model was trained on The Cancer Genome Atlas (TCGA) dataset and confirmed using separate GEO datasets. To evaluate tumor immune context, we analyzed immune cell presence and tumor mutational burden across different risk levels. Laboratory experiments involving both upregulation and silencing of aspartate beta-hydroxylase (ASPH) in LUAD cell cultures were conducted to validate its biological significance.

RESULTS

We identified six tumor cell subsets (C0 to C5), with cluster C1 showing peak palmitoylation levels, distinct genomic alterations, and stronger communication with stromal and immune cells. The 12-gene model effectively categorized LUAD patients into high- and low-risk profiles, showing marked survival differences (p < 0.001) and strong performance in time-dependent ROC analysis. Patients in the high-risk group had increased tumor mutational burden and a more immunosuppressive tumor environment. Laboratory findings revealed that raising ASPH expression promoted cell growth, motility, and epithelial-mesenchymal transition. In contrast, reducing ASPH levels triggered cell death and decreased invasiveness.

CONCLUSIONS

Our single-cell analysis focused on palmitoylation reveals new dimensions of tumor diversity in LUAD and establishes a validated 12-gene risk signature. Functional studies highlight ASPH as a promising candidate for therapeutic targeting. These results deepen our understanding of palmitoylation-associated pathways and present a foundation for both outcome prediction and precision-based treatment strategies in LUAD.

摘要

背景

肺腺癌(LUAD)的特征是肿瘤细胞存在显著差异,并且仍然是全球癌症死亡的主要原因。棕榈酰化是一种基于脂质的动态修饰,发生在蛋白质合成之后,影响各种癌症相关蛋白的行为和寿命。然而,其在塑造细胞复杂性和预测LUAD患者预后方面的作用尚未完全阐明。

方法

我们检查了来自LUAD样本的单细胞RNA测序数据集,以识别不同的恶性细胞群。使用GSVA和ssGSEA技术估计棕榈酰化相关基因的活性。为了进一步定义细胞特征,我们应用了拷贝数变异图谱、伪时间进程建模、转录因子调控评分和细胞间相互作用分析。使用来自具有最显著棕榈酰化模式的簇(C1)的标记基因建立了一个12基因风险模型。该模型在癌症基因组图谱(TCGA)数据集上进行训练,并使用单独的GEO数据集进行验证。为了评估肿瘤免疫背景,我们分析了不同风险水平下免疫细胞的存在情况和肿瘤突变负担。在LUAD细胞培养物中进行了涉及天冬氨酸β-羟化酶(ASPH)上调和沉默的实验室实验,以验证其生物学意义。

结果

我们鉴定出六个肿瘤细胞亚群(C0至C5),其中簇C1显示出最高的棕榈酰化水平、独特的基因组改变,以及与基质和免疫细胞更强的通讯。12基因模型有效地将LUAD患者分为高风险和低风险组,显示出显著的生存差异(p < 0.001),并且在时间依赖性ROC分析中表现出色。高风险组患者的肿瘤突变负担增加,肿瘤免疫环境更具免疫抑制性。实验室结果表明,提高ASPH表达可促进细胞生长、运动和上皮-间质转化。相反,降低ASPH水平会引发细胞死亡并降低侵袭性。

结论

我们专注于棕榈酰化的单细胞分析揭示了LUAD肿瘤多样性的新维度,并建立了一个经过验证的12基因风险特征。功能研究突出了ASPH作为一个有前景的治疗靶点候选者。这些结果加深了我们对棕榈酰化相关途径的理解,并为LUAD的预后预测和精准治疗策略奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76cc/12363589/d812344f8fa8/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验