Suppr超能文献

无环区间删失马尔可夫多状态模型中转移强度的非参数估计

Nonparametric Estimation of Transition Intensities in Interval-Censored Markov Multistate Models Without Loops.

作者信息

Gomon Daniel, Putter Hein

机构信息

Mathematical Institute, Leiden University, Leiden, the Netherlands.

Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, the Netherlands.

出版信息

Stat Med. 2025 Aug;44(18-19):e70225. doi: 10.1002/sim.70225.

Abstract

Interval-censored multistate data is collected when the state of a subject is observed periodically. The analysis of such data using nonparametric multistate models was not possible until recently but is very desirable as it allows for more flexibility than its parametric counterparts. The single available result to date has some unique drawbacks. We propose a nonparametric estimator of the transition intensities for interval-censored multistate data using an Expectation Maximization algorithm. The method allows for a mix of interval-censored and right-censored (exactly observed) transitions. A condition to check for the convergence of the algorithm is given. A simulation study comparing the proposed estimator to a consistent estimator is performed and shown to yield near identical estimates at smaller computational cost. A data set on the emergence of teeth in children is analyzed. Software to perform the analyses is publicly available.

摘要

当定期观察受试者的状态时,就会收集区间删失多状态数据。直到最近,使用非参数多状态模型对这类数据进行分析才成为可能,但这非常值得期待,因为它比参数模型更具灵活性。迄今为止唯一可用的结果存在一些独特的缺点。我们提出一种使用期望最大化算法对区间删失多状态数据的转移强度进行非参数估计的方法。该方法允许区间删失转移和右删失(精确观察到)转移混合出现。给出了检查算法收敛性的一个条件。进行了一项模拟研究,将所提出的估计器与一个一致估计器进行比较,结果表明在所提出的估计器在计算成本较低的情况下能产生几乎相同的估计值。对一组关于儿童牙齿萌出的数据集进行了分析。用于执行这些分析的软件是公开可用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff96/12355648/fe90f6409456/SIM-44-0-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验